Association in Molten Salts and Mobility Isotherms showing the Chemla Effect

1996 ◽  
Vol 51 (12) ◽  
pp. 1229-1235 ◽  
Author(s):  
Alfred Klemm ◽  
Lutz Schäfer

Abstract In 1984 a model for additive binary molten salt mixtures had been proposed that allowed for a qualitative understanding of the occurence of the Chemla effect (equal internal mobilities at a certain mixing ratio of the salts). In that model the presence of three ions (1,2 and 3) and two neutral molecules (4 and 5) consisting of two ions is assumed, and the ratios K1 = x4 / x1x3 and K2 = X5 / X2X3 of their mole fractions are assumed to be independent of the mixing ratio of the salts. In the present paper, that model is compared with recent experimental results on the system (Li, Cs)Cl obtained in Japan. The comparison shows that the model is too simple for a quantitative description of systems showing the Chemla effect. Rather a dependence of K1 and K2 on the mixing ratio of the salts must be assumed.

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7652
Author(s):  
Alberto Giaconia ◽  
Irena Balog ◽  
Giampaolo Caputo

Hybridization of CSP plants with alternative energy sources (fuels) represents a means to improve flexibility of operation, power dispatchability and utilization factor of the plant. New generation CSP plants make use of molten salts as Heat Transfer Fluid (HTF) besides Thermal Energy Storage (TES) medium. Therefore, proper interfaces should be developed to effectively transfer the heat from the back-up source to the molten salt. This paper presents the results obtained in the experimental validation of an innovative gas-fueled Molten Salt Heater (MSH) prototype. The objective of this research is to validate the MSH design, where the specific properties of molten salts (compared to other HTFs, e.g., thermal oils) have to be taken into account. The developed reduced-scale MSH (90 kW thermal) consists of a heat exchanger with the molten salt flowing inside finned tubes cross-flowed with the hot flue gas generated in an upstream combustion chamber. LPG or a biogas-like mixture has been used as gas fuel. Experimental results have been obtained with two different molten salt mixtures: the “solar salt” binary mixture (NaNO3/KNO3, 60/40%w) typically used in CSP applications (up to 565 °C) and the ternary mixture known as Hitec XL® containing sodium/potassium/calcium nitrates (NaNO3/KNO3/Ca(NO3)2, 15/43/42%w) characterized by lower freezing temperatures. Experimental tests have been carried out changing some operative parameters like the flow rate of the molten salt (0.45–0.94 kg/s), the inlet temperatures of the molten salt (303–445 °C) and of the hot gas (596–632 °C). For both molten salt mixtures, it was demonstrated that heat transfer correlations based on the Dittus-Boelter equation allow to predict experimental results with <10% deviation between experimental and theoretical values of the heat transfer coefficient.


2021 ◽  
Vol 7 (5) ◽  
pp. 88
Author(s):  
Alexander M. Long ◽  
S. Scott Parker ◽  
D. Travis Carver ◽  
J. Matt Jackson ◽  
Marisa J. Monreal ◽  
...  

With an increased interest in the use of molten salts in both nuclear and non-nuclear systems, measuring important thermophysical properties of specific salt mixtures becomes critical in understanding salt performance and behavior. One of the more basic and significant thermophysical properties of a given salt system is density as a function of temperature. With this in mind, this work aims to present and layout a novel approach to measuring densities of molten salt systems using neutron radiography. This work was performed on Flight Path 5 at the Los Alamos Neutron Science Center at Los Alamos National Laboratory. In order to benchmark this initial work, three salt mixtures were measured, NaCl, LiCl (58.2 mol%) + KCl (41.8 mol%), and MgCl2 (32 mol%) + KCl (68 mol%). Resulting densities as a function of temperature for each sample from this work were then compared to previous works employing traditional techniques. Results from this work match well with previous literature values for all salt mixtures measured, establishing that neutron radiography is a viable technique to measure density as a function of temperature in molten salt systems. Finally, advantages of using neutron radiography over other methods are discussed and future work in improving this technique is covered.


1965 ◽  
Vol 18 (8) ◽  
pp. 1171 ◽  
Author(s):  
H Bloom ◽  
A Doroszkowski ◽  
SB Tricklebank

The thermal conductivity of the molten salts NaNO3, KNO3, AgNO3, and NaNO2 was measured by an equilibrium method over a range of temperature. Similar measurements were carried out for the NaNO3 + KNO3, AgNO3 + NaNO3, and AgNO3 + KNO3 systems. The free volume of molten salts has been calculated from thermal conductivity and is compared with results from sound velocity determinations.


2021 ◽  
Vol 109 (5) ◽  
pp. 357-365
Author(s):  
Zhiqiang Cheng ◽  
Zhongqi Zhao ◽  
Junxia Geng ◽  
Xiaohe Wang ◽  
Jifeng Hu ◽  
...  

Abstract To develop the application of 95Nb as an indicator of redox potential for fuel salt in molten salt reactor (MSR), the specific activity of 95Nb in FLiBe salt and its deposition of 95Nb on Hastelloy C276 have been studied. Experimental results indicated that the amount of 95Nb deposited on Hastelloy C276 resulted from its chemical reduction exhibited a positive correlation with the decrease of 95Nb activity in FLiBe salt and the relative deposition coefficient of 95Nb to 103Ru appeared a well correlation with 95Nb activity in FLiBe salt. Both correlations implied that the measurement of 95Nb activity deposited on Hastelloy C276 specimen might provide a quantitative approach for monitoring the redox potential of fuel salt in MSR.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Andrzej Bielecki ◽  
Sebastian Ernst ◽  
Wioletta Skrodzka ◽  
Igor Wojnicki

Concentrated solar power plants belong to the category of clean sources of renewable energy. The paper discusses the possibilities for the use of molten salts as storage in modern CSP plants. Besides increasing efficiency, it may also shift their area of application: thanks to increased controllability, they may now be used not only to cover baseload but also as more agile, dispatchable generators. Both technological and economic aspects are presented, with focus on the European energy sector and EU legislation. General characteristics for CSP plants, especially with molten salt storage, are discussed. Perspectives for their development, first of all in economic aspects, are considered.


CORROSION ◽  
2001 ◽  
Vol 57 (6) ◽  
pp. 489-496 ◽  
Author(s):  
M. Amaya ◽  
J. Porcayo-Calderon ◽  
L. Martinez

Abstract The performance of Fe-Si coatings and an iron aluminide (FeAl) intermetallic alloy (FeAl40at%+0.1at%B+10vol%Al2O3) in molten salts containing vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4) is reported. Corrosion and fouling by ash deposits containing V2O5 and Na2SO4 are typical corrosion problems in fuel oil-fired electric power units. High-temperature corrosion tests were performed using both electrochemical polarization and immersion techniques. The temperature interval of this study was 600°C to 900°C, and the molten salts were 80wt%V2O5-20wt%Na2SO4. Curves of corrosion current density vs temperature obtained by the potentiodynamic studies are reported, as well as the weight loss vs temperature curves from molten salt immersion tests. Both Fe-Si coatings and FeAl40at%+0.1at%B+10vol%Al2O3 showed good behavior against molten salt corrosion. The final results show the potential of these coatings and alloys to solve the high-temperature corrosion in fuel oil-fired electric power units.


2021 ◽  
Vol 168 (2) ◽  
pp. 026502
Author(s):  
R. L. Fitzhugh ◽  
A. D. Clark ◽  
S. D. Nickerson ◽  
M. J. Memmott ◽  
J. N. Harb

Sign in / Sign up

Export Citation Format

Share Document