Incommensurability and Domain Structure of K2SbF5

2002 ◽  
Vol 57 (6-7) ◽  
pp. 456-460
Author(s):  
A. M. Panich ◽  
L. A. Zemnukhova ◽  
R. L. Davidovich

Phase transitions and incommensurability in K2SbF5 have been studied by means of 123Sb NQR spectra and spin-lattice relaxation measurements. The phase transitions occur at 117, 135 and 260 K. The line shape and temperature dependence of the spin-lattice relaxation time T1 at 135 to 260 K are characteristic for an incommensurate state with a plane wave modulation regime. At 117 to 135 K a distinct fine structure of the NQR spectra has been observed. The X-ray diffraction pattern of this phase is interpreted as a coexistence of two modulation waves along the a and b axis with wave vectors (a*/6 + b*/6) and (a*/2 + b*/2), respectively. The best interpretation that fits our NQR data is a coexistence of two domains, the structures of which are modulated with different periods in such a manner that each domain exhibits only one of the aforementioned modulation waves. Redistribution of line intensities with the variation of temperature shows that one of the domains becomes energetically preferable on cooling and is transformed into the low temperature phase at 117 K. The 123SbNQR measurements in K2SbF5 show unusually short values of T1, which become close to the spin-spin relaxation time T2 with increasing temperature. - Pacs: 61.44.Fw, 64.60, 64.70, 64.70.Rh, 76.60

1996 ◽  
Vol 51 (5-6) ◽  
pp. 755-760 ◽  
Author(s):  
Hiromitsu Terao ◽  
Tsutomu Okuda ◽  
Koji Yamada ◽  
Hideta Ishihara ◽  
Alarich Weiss

NQR and DTA revealed phase transitions in [(CH3)4N] 2HgBr4 and [(CH3)4N] 2HgI4 at 272 K and 264 K, respectively. The NQR resonance lines faded out with increasing temperature. From preliminary measurements of 81Br NQR spin-lattice relaxation times and 199Hg NMR a reorientational motion of HgBr4 ions around one of their pseudo C3 axes in the room temperature phase of [(CH3)4N] 2HgBr4 is suggested.


2000 ◽  
Vol 55 (6-7) ◽  
pp. 570-574 ◽  
Author(s):  
M. Grottel ◽  
Z. Paja̡ka ◽  
R. Jakubasb

The proton NMR second moment and spin-lattice relaxation time of polycrystalline [C(NH2)3]3Bi2Br9 were studied in a wide-temperature range. Dynamical inequivalence of two crystallographically different guanidinium cations has been revealed . The C3 reorientation of the two types of cations was found to be hindered by different potential barriers (25.1 kJ/mol and 34.7 kJ/mol). At higher temperatures an overall reorientation of the cations was revealed. The existence and order-disorder character of the phase transitions at 333, 350, 415, and 425 K have been confirmed.


1992 ◽  
Vol 47 (1-2) ◽  
pp. 277-282 ◽  
Author(s):  
Keizo Horiuchi ◽  
Daiyu Nakamura

AbstractThe 35Cl NQR spin-lattice relaxation time T1Q, spin-spin-relaxation time T2Q, and 1H NMR spin-lattice relaxation time in the rotating frame T1Q in Mg(H2O) 6SnCl6 were measured as functions of temperature. Above room temperature T2Q increased rapidly with increasing temperature, which can be explained by fluctuations of the local magnetic field at the chlorine nuclei due to cationic motions. From the T1Q experiments, these motions are found to be attributable to uniaxial and overall reorientations of [Mg(H2O)6 ] 2 + ions with activation energies of 95 and 116 kJ mol - 1 , respectively. Above ca. 350 K, T1Q decreased rapidly with increasing temperature, which indicates a reorientational motion of [SnCl6] 2 - ions with an activation energy of 115 kJ mol -1 .


1996 ◽  
Vol 51 (5-6) ◽  
pp. 657-661 ◽  
Author(s):  
Mutsuo Igarashi ◽  
Noriaki Okubo ◽  
Shuichi Hashimoto ◽  
Deok Joon Cha ◽  
Ryozo Yoshizaki

Abstract The spin-lattice relaxation time T1 of 23Na-NMR in a dehydrated Na-X zeolite has been measured from 20 to 300 K. The recovery curve is not single-exponential at all measured temperatures and T1-1 increases with the square of temperature around room temperature. The results are analyzed by assuming non-equivalent sites and by applying the theory of the Raman process based on covalency.


1994 ◽  
Vol 49 (1-2) ◽  
pp. 297-301 ◽  
Author(s):  
Y. Kume ◽  
T. Asaji ◽  
R. Ikeda

Abstract The temperature dependence o f the 35Cl NQR frequency and spin-lattice relaxation time T1Q of (NH4)2SeCl6 and (ND4)2SeCl6 were measured from 400 K to 24.8 and 53.8 K, respectively. The disappearance of NQR signals in the low temperature region of both salts is attributed to phase transitions. We concluded from the temperature behavior of just above the transition point that the operative mechanism o f the transition is different in these salts: The transition of (ND4)2SeCl6 seems to be associated with rotary soft modes, while in the natural salt non-rotary soft modes seem to play an important role at the transition.


1998 ◽  
Vol 53 (6-7) ◽  
pp. 603-607 ◽  
Author(s):  
Hiroshi Miyoshi ◽  
Keizo Horiuchi ◽  
Narumi Sakagami ◽  
Kenichi Okamoto ◽  
Ryuichi Ikeda

Abstract The 35Cl NQR frequencies, spin-lattice relaxation time and 1H NMR relaxation time were measured on crystalline Na2PtCl6 • 6H2O at 77-350 K. The presence of three nonequivalent chlorine sites found by X-ray diffraction measurement is in agreement with the observed three NQR lines, which have different temperature dependences attributable to differences in the direction of H-bonding with water molecules. The three NQR lines correspond to three kinds of chlorines with different Pt-Cl distances and H-bond directions.


1978 ◽  
Vol 39 (C6) ◽  
pp. C6-1215-C6-1216
Author(s):  
H. Ahola ◽  
G.J. Ehnholm ◽  
S.T. Islander ◽  
B. Rantala

Sign in / Sign up

Export Citation Format

Share Document