The Crystal Structure of Eu11Sb10

1979 ◽  
Vol 34 (9) ◽  
pp. 1213-1217 ◽  
Author(s):  
R. Schmelczer ◽  
D. Schwarzenbach ◽  
F. Hulliger

Abstract Eu11Sb10 crystallizes in the tetragonal Ho11Ge10 structure type, space group I4/mmm, with a = 12.325(2), c = 18.024(4) Å; Z = 4. Large thermal parameters of certain atoms and unusual interatomic distances might suggest that the true structure is slightly distorted, but attempts to desymmetrize the structure were unsuccessful. Analogous anomalies occur in most of the other representatives of the Ho11Ge10 type. Eu11Sb10 appears to be metallic. It contains divalent Eu and is antiferromagnetic below TN ≈ 5 K. Other new representatives of the Ho11Ge10 structure type are Sr11Sb10, Sr11Bi10 and Ba11Sb10.

1978 ◽  
Vol 33 (8) ◽  
pp. 823-826 ◽  
Author(s):  
Klaus Volk ◽  
Wiking Müller

The new compound Li5Na2Sn4 crystallizes trigonally, a = 472.3 ± 1 pm, c = 7178 ± 8 pm, space group R3̅m-D53d. A quarter of the Sn atoms in the unit cell build up a puck­ered net of six-membered rings, another quarter is bound to the net-atoms forming a tetrahedral Sn coordination. The other half of the Sn atoms is ordered in layers of parallel Sn2 pairs. The nets and layers are separated by the alkali atoms. The structural relations to the variants of the W-structure type of compounds in the system Li-Sn and Na-Sn are shown.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julia Rienmüller ◽  
Jascha Bandemehr ◽  
Florian Kraus

Abstract We report on the syntheses and single-crystal structure determinations of the compounds A 2SiF6 (A = Tl, Rb, Cs). In comparison to the previous powder-based structure models we achieved more precise atom positions and distances. The compounds crystallize in the K2PtCl6 structure type, space group Fm 3 ‾ $‾{3}$ m (No. 225, cF36) with a = 8.4749(10) Å, V = 608.7(2) Å3, Z = 4 at T = 100 K for Tl2SiF6, a = 8.3918(10) Å, V = 591.0(2) Å3, Z = 4 at T = 100 K for Rb2SiF6, and a = 8.8638(11) Å, V = 696.4(3) Å3, Z = 4 at T = 200 K for Cs2SiF6. For the compound Tl3[SiF6]F we present a previously unknown tetragonal modification and correct the crystal structure of its trigonal modification to hexagonal. The tetragonal one crystallizes in the (NH4)3[SiF6]F structure type, space group P4/mbm (No. 127, tP22) with a = 8.0313(8), c = 5.8932(6) Å, V = 380.13(7) Å3, Z = 2, T = 298 K, and the crystal structure of the hexagonal modification is best described in space group P63 mc (No. 186, hP22) with a = 7.8248(4), c = 6.8768(4) Å, V = 364.64(4) Å3, Z = 2, T = 100 K.


1992 ◽  
Vol 47 (12) ◽  
pp. 1746-1748 ◽  
Author(s):  
Christian Hardt ◽  
Petra Vogt ◽  
Horst Sabrowsky

Colorless K4O(CN)2 has been prepared. The compound crystallizes in the tetragonal anti-K2NiF4 structure type (space group I4/mmm) with a = 515.5(1) and c = 1606.7(3) pm, Z = 2. The structure was determined by single crystal X-ray diffraction, R = 3.35%.


1996 ◽  
Vol 51 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Michael Wachhold ◽  
William S. Sheldrick

Abstract Tetraselenidoarsenates(V) and -antimonates(V), Rubidium, Cesium, Methanolothermal Synthesis, Crystal Structure Methanolothermal reaction of M2CO3 (M = Rb, Cs) with E2Se3 (E = As, Sb) and Se at temperatures in the range 180 -200°C leads to the formation of tetraselenidoarsenates(V) and -antimonates(V) M3ESe4 in moderate to quantitative yields. All four compounds crystallize in the (NH4)3AsS4 structure type (space group Pnma) and contain isolated slightly distorted tetrahedral ESe3-4 anions with crystallographic CS symmetry. Both of the independent cations are coordinated in an irregular manner by seven Se atoms.


2010 ◽  
Vol 65 (12) ◽  
pp. 1416-1426 ◽  
Author(s):  
Johannes Bender ◽  
Andreas Wohlfarth ◽  
Constantin Hoch

Several new alkali metal oxometallates with anions built up from tetrahedral [MO4] units were obtained in reactions aimed at the formation of alkali metal suboxometallates or by thermally decomposing the latter. Rubidium orthoaluminate tetrahydroxide Rb9(AlO4)(OH)4 crystallizes with a new structure type (space group P21/c, a = 13.116(1), b = 6.9266(5), c = 18.934(2) A , β = 92.05(1)°, V = 1719.0(3) Å3, Z = 4, R1 = 0.0352) and contains orthoaluminate anions [AlO4]5− and isolated hydroxide anions. Rubidium orthogallate Rb5GaO4 crystallizes with the Na5GaO4 structure type (space group Pbca, a = 6.9318(5), b = 21.309(2), c = 11.740(1) Å, V = 1734.2(3) Å3, Z = 8, R1 = 0.0423) with isolated orthogallate anions [GaO4]5−. Cesium chromate oxide Cs10(CrO4)2O adopts the Cs10(GeO4)2O structure type (space group P21/c, a = 12.903(1), b = 11.4523(8), c = 19.074(3) Å , β = 127.903(8)°,V = 2223.9(4) Å3, Z = 4, R1 = 0.0326) with orthochromate(IV) anions [CrO4]4− and isolated oxide anions. In all orthometallates the anions [MO4]n− deviate only slightly from ideal tetrahedral symmetry. Cesium diindate Cs8In2O7 crystallizes with the Cs8Fe2O7 structure type (space group P21/c, a = 7.4307(6), b = 18.6181(14), c = 7.2639(6) Å , β = 119.225(8)°, V = 877.0(1) Å3, Z = 2, R1 = 0.0349). A single-crystal structure investigation at r. t. has shown linear diindate units, but the temperature dependence of the libration angles from TLS studies for the bridging oxygen atom suggests a slightly bent and dynamically disordered diindate anion.


Author(s):  
Elena Sokolova ◽  
Maxwell C. Day ◽  
Frank C. Hawthorne ◽  
Atali A. Agakhanov ◽  
Fernando Cámara ◽  
...  

ABSTRACT The crystal structure of perraultite from the Oktyabr'skii massif, Donetsk region, Ukraine (bafertisite group, seidozerite supergroup), ideally NaBaMn4Ti2(Si2O7)2O2(OH)2F, Z = 4, was refined in space group C to R1 = 2.08% on the basis of 4839 unique reflections [Fo > 4σFo]; a = 10.741(6), b = 13.841(8), c = 11.079(6) Å, α = 108.174(6), β = 99.186(6), γ = 89.99(1)°, V = 1542.7(2.7) Å3. Refinement was done using data from a crystal with three twin domains which was part of a grain used for electron probe microanalysis. In the perraultite structure [structure type B1(BG), B – basic, BG – bafertisite group], there is one type of TS (Titanium-Silicate) block and one type of I (Intermediate) block; they alternate along c. The TS block consists of HOH sheets (H – heteropolyhedral, O – octahedral). In the O sheet, the ideal composition of the five [6]MO sites is Mn4 apfu. There is no order of Mn and Fe2+ in the O sheet. The MH octahedra and Si2O7 groups constitute the H sheet. The ideal composition of the two [6]MH sites is Ti2 apfu. The TS blocks link via common vertices of MH octahedra. The I block contains AP(1,2) and BP(1,2) cation sites. The AP(1) site is occupied by Ba and the AP(2) site by K > Ba; the ideal composition of the AP(1,2) sites is Ba apfu. The BP(1) and BP(2) sites are each occupied by Na > Ca; the ideal composition of the BP(1,2) sites is Na apfu. We compare perraultite and surkhobite based on the work of Sokolova et al. (2020) on the holotype sample of surkhobite: space group C , R1 = 2.85 %, a = 10.728(6), b = 13.845(8), c = 11.072(6) Å, α = 108.185(6), β = 99.219(5), γ = 90.001(8)°, V = 1540.0(2.5) Å3; new EPMA data. We show that (1) perraultite and surkhobite have identical chemical composition and ideal formula NaBaMn4Ti2(Si2O7)2O2(OH)2F; (2) perraultite and surkhobite are isostructural, with no order of Na and Ca at the BP(1,2) sites. Perraultite was described in 1991 and has precedence over surkhobite, which was redefined as “a Ca-ordered analogue of perraultite” in 2008. Surkhobite is not a valid mineral species and its discreditation was approved by CNMNC IMA (IMA 20-A).


1994 ◽  
Vol 49 (10) ◽  
pp. 1444-1447 ◽  
Author(s):  
Helmut Goesmann ◽  
Dieter Fenske

AbstractSingle crystals of the title compound have been prepared by the reaction of benzonitrile with LiN-(SiMe3)2 in hexane and subsequent evaporation of the solvent. Space group P21/n, Z = 4, structure solution with 7945 observed unique reflections. R = 0.052. Lattice dimensions at -70 °C: a = 1485.2(9); b = 2486.9(11); c = 1568.9(8) pm; β = 91.06(4)°. The compound forms a trimeric ion ensemble in which two of the lithium cations are coordinated by three nitrogen atoms of two phenylamidinate an ions, the other one by four nitrogen atoms of two chelating phenylaminidate anions and in addition by the nitrogen atom of a benzonitrile molecule.


1978 ◽  
Vol 33 (12) ◽  
pp. 1434-1437 ◽  
Author(s):  
Joachim Stöhr ◽  
Wiking Müller ◽  
Herbert Schäfer

Abstract Li2In crystallizes isotypic with Li2Ga, space group Cmcm-D2a17, a = 476.3(1), b = 1001.7(3) and c = 473.5(1) pm, the In-atoms build up zig-zag-chains. Li13In3 forms a new structure type, f.c.c., space group Fd 3m-Oh7, a = 1355.6(2) pm; it can be described as an ordered variant of the b.c.c. package with isolated In-atoms.


1980 ◽  
Vol 43 (330) ◽  
pp. 753-759 ◽  
Author(s):  
L. Fanfani ◽  
G. Giuseppetti ◽  
C. Tadini ◽  
P. F. Zanazzi

SummaryThe crystal structure of synthetic kogarkoite has been determined from X-ray data collected on an automatic diffractometer. The refinement was performed by a least-squares method employing anisotropic thermal parameters. The 3157 reflections with I > 3σ(I) converged to a conventional R value of 0.033. The cell content is 12 Na3SO4F, the space-group P21/m, a = 18.074, b = 6.958, c = 11.443 Å, β = 107.71°.Kogarkoite presents a marked trigonal subcell with c′ corresponding to [102] of the monoclinic cell. The tridimensional framework can be considered built up by nine differently stacked layers of Na atoms approximately perpendicular to the c′ axis (five sheets are present in galeite, six in sulphohalite, and seven in schairerite). The very close structural relationships between these minerals are discussed.


2003 ◽  
Vol 58 (11) ◽  
pp. 1112-1116 ◽  
Author(s):  
Kurt O. Kleppa ◽  
Norbert A. Harringer ◽  
Hubert Preßlinger

Abstract Lustrous needle shaped prismatic single crystals of the new compound Ca10V5.2Fe0.8O24 were obtained out of a sample with nominal composition Ca2Fe1.6V0.4O5 prepared at 1400 °C. The crystals are opaque and stable to humid air. Ca10V5.2Fe0.8O24 crystallizes with a new structure type, space group Pnma with a = 6.803(3), b = 16.015(8), c = 10.418(7)Å , Z = 2, R = 0.041. The crystal structure is characterized by two mononuclear tetrahedral species, MO4, which differ significantly from each other with respect to their M-O bond lengths. One with an average bond distance of 1.709(8)Å represents an orthovanadate ion. The other with a significantly larger value d(M-O) = 1.744(6) Å corresponds to a mixed occupation of its centre according to [V0.8Fe0.2O4]3.5−. In the crystal structure the complex anions are arranged in separate sheets parallel to the (010) plane. They are separated from each other by three crystallographically independent Ca2+ ions which are each coordinated by 7 oxygen atoms in distorted pentagonal bipyramidal and trigonal prismatic configurations, respectively.


Sign in / Sign up

Export Citation Format

Share Document