Kaliumlithiumsulfid, KLiS: Das erste Interalkalimetallsulfid / Potassium Lithium Sulphide, KLiS: The First Inter Alkaline Metal Sulphide

1985 ◽  
Vol 40 (6) ◽  
pp. 733-735 ◽  
Author(s):  
Horst Sabrowsky ◽  
Alfred Thimm ◽  
Petra Mertens

Abstract The compound KLiS has been prepared and its crystal structure is determined by X-ray diffraction techniques. The hygroscopic, yellow compound crystallizes in the tetragonal space group P4/nmm (Z = 2) with the cell parameters a - 431.79(4), c = 696.20(9) pm. The structure was solved from 2100 counter reflections (356 symmetry independent reflections) through a Patterson synthesis and refinement by Fourier syntheses to a least squares residue of 0.026. The structure is characterized by c-centered squares of lithium layers interspersed by anti-parallel ordered K-S-pairs forming an anti-PbFCl-type geometry.

1985 ◽  
Vol 40 (12) ◽  
pp. 1759-1760 ◽  
Author(s):  
Horst Sabrowsky ◽  
Alfred Thimm ◽  
Petra Vogt-Mertens

Abstract The colourless com pound NaLiS has been prepared and its structure determined by single crystal X-ray diffraction techniques. The very hygroscopic NaLiS crystallizes in the tetragonal space group P4/nmm (Z = 2) with the cell parameters a = 402.6(1), c = 649.5(2) pm. The structure was solved from 720 counter reflections (216 symmetry independent reflections) by differential Fourier syntheses. Refining gives a least squares residue of 0.024. The anti-PbFCl-type structure is characterized by layers of LiS4/4-tetrahedra connected by their edges in two dimensions and 2 interspersed layers of sodium


1975 ◽  
Vol 53 (8) ◽  
pp. 1139-1143 ◽  
Author(s):  
Robert Melanson ◽  
Joseph Hubert ◽  
F. D. Rochon

The molecular and crystal structure of the [Pt(dien)Br]Br complex (dien = diethylenetriamine) has been studied by X-ray diffraction. The compound belongs to the orthorhombic Pca21 space group and the cell parameters are: a = 14.211, b = 4.940, c = 13.450 Å, and Z = 4. The refinement of the positional and anisotropic thermal parameters, carried out by full matrix least squares calculations, converged to R = 0.039 and Rw = 0.036.The coordination around the platinum atom is planar. The crystal consists of alternate layers of [Pt(dien)Br]+ cations and Br− ions parallel to the ac plane.


1985 ◽  
Vol 40 (12) ◽  
pp. 1761-1762 ◽  
Author(s):  
Horst Sabrowsky ◽  
Petra Vogt-Mertens ◽  
Alfred Thimm

Abstract The colourless compound RbNaO has been prepared as described earlier [1 ], but single crystals were not yet available at that time. N ow its crystal structure was determined by X-ray diffraction techniques. The very hygroscopic RbNaO crystallizes in the tetragonal space group P4/nmm (Z = 2) with the cell parameters a - 406.8(1), c = 649.4(1) pm. The structure was solved from 1031 counter reflections (375 symmetry independent reflections) by using differential Fourier syntheses. Refining gives a least squares residue o f 0.086. The structure forms an am/-PbFCl-type geom etry with c-centered squares of sodium interspersed by antiparallel ordered pairs of R b-O


1975 ◽  
Vol 53 (16) ◽  
pp. 2371-2374 ◽  
Author(s):  
Robert Melanson ◽  
Fernande D. Rochon

The molecular and crystal structure of cis-dichlorobis (dimethylsulfoxide) platinum(II), cis-[PtCl2(DMSO)2], has been studied by X-ray diffraction. The compound belongs to the mono-clinic P21/c space group and the cell parameters are: a = 8.653, b = 13.580, c = 10.914 Å, β = 123.43°, and Z = 4. The refinement of the positional and anisotropic thermal parameters, carried out by full matrix least-squares calculations, converged to R = 0.029 and Rw = 0.027.The coordination around the platinum atom is planar. As expected, the DMSO molecules are bonded to the platinum atom through sulfur. The bond distances found are: Pt—Cl = 2.306, 2.312 Å; Pt—S = 2.244, 2.229 Å; S—O = 1.469, 1.454 Å, and S—C = 1.77 to 1.79 Å. The crystal consists of layers of molecules parallel to the ac plane.


Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 486 ◽  
Author(s):  
Andrey A. Zolotarev ◽  
Elena S. Zhitova ◽  
Maria G. Krzhizhanovskaya ◽  
Mikhail A. Rassomakhin ◽  
Vladimir V. Shilovskikh ◽  
...  

The technogenic mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O from the burned dumps of the Chelyabinsk coal basin have been investigated by single-crystal X-ray diffraction, scanning electron microscopy and high-temperature powder X-ray diffraction. The NH4MgCl3·6H2O phase is monoclinic, space group C2/c, unit cell parameters a = 9.3091(9), b = 9.5353(7), c = 13.2941(12) Å, β = 90.089(8)° and V = 1180.05(18) Å3. The crystal structure of NH4MgCl3·6H2O was refined to R1 = 0.078 (wR2 = 0.185) on the basis of 1678 unique reflections. The (NH4)2Fe3+Cl5·H2O phase is orthorhombic, space group Pnma, unit cell parameters a = 13.725(2), b = 9.9365(16), c = 7.0370(11) Å and V = 959.7(3) Å3. The crystal structure of (NH4)2Fe3+Cl5·H2O was refined to R1 = 0.023 (wR2 = 0.066) on the basis of 2256 unique reflections. NH4MgCl3·6H2O is stable up to 90 °C and then transforms to the less hydrated phase isotypic to β-Rb(MnCl3)(H2O)2 (i.e., NH4MgCl3·2H2O), the latter phase being stable up to 150 °C. (NH4)2Fe3+Cl5·H2O is stable up to 120 °C and then transforms to an X-ray amorphous phase. Hydrogen bonds provide an important linkage between the main structural units and play the key role in determining structural stability and physical properties of the studied phases. The mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O are isostructural with natural minerals novograblenovite and kremersite, respectively.


1986 ◽  
Vol 51 (11) ◽  
pp. 2521-2527 ◽  
Author(s):  
Jan Lokaj ◽  
Eleonóra Kellö ◽  
Viktor Kettmann ◽  
Viktor Vrábel ◽  
Vladimír Rattay

The crystal and molecular structure of SnBu2(pmdtc)2 has been solved by X-ray diffraction methods and refined by a block-diagonal least-squares procedure to R = 0.083 for 895 observed reflections. Monoclinic, space group C2, a = 19.893(6), b = 7.773(8), c = 12.947(8) . 10-10 m, β = 129.07(5)°, Z = 2, C20H38N2S4Sn. Measured and calculated densities are Dm = 1.38(2), Dc = 1.36 Mg m-3. Sn atom, placed on the twofold axes, is coordinated with four S atoms in the distances Sn-S 2.966(6) and 2.476(3) . 10-10 m. Coordination polyhedron is a strongly distorted octahedron. Ligand S2CN is planar.


1996 ◽  
Vol 11 (1) ◽  
pp. 31-34 ◽  
Author(s):  
Nicole M. L. N. P. Closset ◽  
René H. E. van Doorn ◽  
Henk Kruidhof ◽  
Jaap Boeijsma

The crystal structure of La1−xSrxCoO3−δ (0≤x≤0.6) has been studied, using powder X-Ray diffraction. The crystal structure shows a transition from rhombohedral distorted perovskite for LaCoO3−δ into cubic perovskite for La0.4Sr0.6CoO3−δ. The cubic unit cell parameter is ac=3.8342(1) Å for La0.4Sr0.6CoO3−δ, the space group probably being Pm3m. Using a hexagonal setting, the cell parameters for La0.5Sr0.5CoO3−δ, are a=5.4300(3) Å, c=13.2516(10) Å; a=5.4375(1) Å, c=13.2313(4) Å for La0.6Sr0.4CoO3−δ; a=5.4437(1) Å, c=13.2085(5) Å for La0.7Sr0.3CoO3−δ; a=5.4497(2) Å, c=13.1781(6) Å for La0.8Sr0.2CoO3−δ and a=5.4445(2) Å, c=13.0936(6) Å for LaCoO3−δ with the space group probably being R3c.


1981 ◽  
Vol 34 (10) ◽  
pp. 2243 ◽  
Author(s):  
SR Hall ◽  
S Nimgirawath ◽  
CL Raston ◽  
A Sittatrakul ◽  
S Thadaniti ◽  
...  

The crystal structure of zerumbone, C15H22O, extracted from the rhizomes of Zingiber zerumbet Smith, has been determined by single-crystal X-ray diffraction at 295(1) K and refined by least squares to a residual of 0.051 for 925 'observed' reflections. Crystals are monoclinic, space group P21/c, a 9.036(3), b 9.712(5), c 15.643(6) �, β 97.19(3)�, Z = 4. Although the molecule has no chiral centre, the presence of the three trans double bonds confers considerable distortion and rigidity on the eleven-membered ring and renders the whole molecule chiral and potentially resolvable.


2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 360 ◽  
Author(s):  
G. E. Delgado ◽  
C. Rincón ◽  
G. Marroquin

The crystal structure of the ordered vacancy compound (OVC) Cu3In5Te9 was analyzed using powder X-ray diffraction data. Several structural models were derived from the structure of the Cu-poor Cu-In-Se compound b-Cu0.39In1.2Se2 by permuting the cations in the available site positions. The refinement of the best model by the Rietveld method in the tetragonal space group P2c (Nº 112), with unit cell parameters a = 6.1852(2) Å, c = 12.3633(9) Å, V = 472.98(4) Å3, led to Rp = 7.1 %, Rwp = 8.5 %, Rexp = 6.4 %, S = 1.3 for 162 independent reflections. This model has the following Wyckoff site atomic distribution: Cu1 in 2e (0,0,0); In1 in 2f (½,½,0), In2 in 2d (0,½,¼); Cu2-In3 in 2b (½,0,¼); in 2a (0,0,¼); Te in 8n (x,y,z).


2021 ◽  
Vol 33 (6) ◽  
pp. 717-726
Author(s):  
Daniela Mauro ◽  
Cristian Biagioni ◽  
Federica Zaccarini

Abstract. Gersdorffite, ideally NiAsS, and associated minerals from Contrada Zillì (Peloritani Mountains, Sicily, Italy) have been characterized through electron microprobe analysis and X-ray diffraction. Primary minerals, hosted in quartz veins, are represented by gersdorffite, tetrahedrite-(Fe), and chalcopyrite with minor pyrite and galena. Rare aikinite inclusions were observed in tetrahedrite-(Fe) and chalcopyrite. Gersdorffite occurs as euhedral to subhedral crystals, up to 1 mm in size, with (Sb,Bi)-enriched cores and (Fe,As)-enriched rims. Its chemical composition is (Ni0.79−0.95Fe0.18−0.04Co0.04−0.01)(As0.90−1.03Sb0.10−0.00Bi0.02−0.00)S0.98−0.92. It crystallizes in the space group P213, with unit-cell parameters a=5.6968(7) Å, V=184.88(7) Å3, and Z=4, and its crystal structure was refined down to R1= 0.035. Associated tetrahedrite-(Fe) has chemical formula (Cu5.79Ag0.07)Σ5.86(Cu3.96Fe1.59Zn0.45)Σ6.00(Sb3.95As0.17Bi0.03)Σ4.15S13.06, with unit-cell parameters a= 10.3815(10) Å, V=1118.9(3) Å3, and space group I-43m. Its crystal structure was refined to R1=0.027. Textural and crystallographic data suggest a polyphasic crystallization of gersdorffite under low-temperature conditions.


Sign in / Sign up

Export Citation Format

Share Document