Catalytic Hydrogenation of Pyrylium Salts: A Convenient Route to Alkyl-Substituted Tetrahydropyrans

1986 ◽  
Vol 41 (4) ◽  
pp. 502-504 ◽  
Author(s):  
Gheorghe Mihai ◽  
Teodor-Silviu Balaban

2,4.6-Trialkylpyrylium perchlorates afford in high yields by hydrogenation on palladium catalyst at room tem perature the corresponding all-dis-2,4.6-trialkyltetrahydropyrans, whereas other reaction conditions lead to mixtures of tetrahydropyrans and hydrogenolyzed products

2020 ◽  
Vol 17 ◽  
Author(s):  
Visarapu Malathi ◽  
Pedavenkatagari Narayana Reddy ◽  
Pannala Padmaja

Abstract:: An efficient method has been developed for the synthesis of new pyrano[3,2-c] and pyrano[3,2-a]carbazole de-rivatives via a three component reaction of 4-hydroxycarbazole or 2-hydroxycarbazole, isocyanides, and dialkylacetylenedi-carboxylates. Noteworthy features of this protocol include mild reaction conditions, catalyst-free, high atom-economy and high yields.


1992 ◽  
Vol 57 (2) ◽  
pp. 393-396 ◽  
Author(s):  
Martin Kotora ◽  
Milan Hájek

The 2 : 1 adduct as the final product of the addition of tetrachloromethane to 1,5-hexadiene catalyzed by copper(I)-butylamine complex was obtained in high yield (96%) under mild reaction conditions. Predominant 1 : 1 adduct formation was observed in the presence of a palladium catalyst or dibenzoyl peroxide initiator.


2011 ◽  
Vol 7 ◽  
pp. 243-245 ◽  
Author(s):  
Benedikt Sammet ◽  
Mathilde Brax ◽  
Norbert Sewald

A novel highly enantioselective two step access to a unit B precursor of cryptophycins in good yields from commercially available starting materials has been developed. The key step is an asymmetric hydrogenation using the commercially available [(COD)Rh-(R,R)-Et-DuPhos]BF4 catalyst. The synthetic route provides the advantage of less synthetic steps, proceeds with high yields and enantioselectivity, and avoids hazardous reaction conditions.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3031 ◽  
Author(s):  
Xiaodong Tang ◽  
Songlei Zhu ◽  
Ying Ma ◽  
Ren Wen ◽  
Lanqi Cen ◽  
...  

A green, convenient and tandem procedure for the efficient synthesis of highly substituted indeno[1,2-b]pyrrole and acenaphtho[1,2-b]pyrrole derivatives by domino three-component reaction of tryptamine/benzylamine, 1,3-dicarbonyl compounds and ninhydrin/ acenaphthenequinone is described. The significant features of this procedure were characterized by mild reaction conditions, high yields, operational simplicity and it being environmentally benign.


2016 ◽  
Vol 88 (3) ◽  
pp. 207-214 ◽  
Author(s):  
Elisabetta Manoni ◽  
Assunta De Nisi ◽  
Marco Bandini

AbstractThe regio- and stereoselective dearomatization of indoles is realized for the first time by combining readily available indolyl precursors and electron-rich allenes, namely allenamides and aryloxyallenes. Inter- as well as intramolecular condensations were realized under gold and Brønsted acid catalysis providing a range of densely functionalized indoline and indolenine cores in high yields and excellent stereochemical outcome. Chemodivergent reaction profiles (Micheal-type addition vs. [2+2]-cycloaddition) were realized by a tailored design of both reaction conditions and functionalization of the reaction partners.


2018 ◽  
Vol 24 (1) ◽  
pp. 23-26
Author(s):  
Zheng Li ◽  
Wenli Song ◽  
Jiaojiao He ◽  
Yan Du ◽  
Jingya Yang

Abstract An efficient method for the synthesis of the title compounds by reactions of divinyl ketones with thiourea is described. This protocol has the advantages of high yields, mild reaction conditions and simple work-up procedure.


2019 ◽  
Vol 31 (5) ◽  
pp. 993-996 ◽  
Author(s):  
Sanjay S. Kotalwar ◽  
Amol D. Kale ◽  
Ram B. Kohire ◽  
Vasant B. Jagrut

An efficient and eco-friendly synthesis of 1,5-benzothiazepines has been developed by the reaction of various 2-propen-1-ones with 2-aminothiophenol using microwave irradiation in greener reaction medium, glycerol. The clean reaction conditions, shorter reaction time, high yields and non-toxic, biodegradable reaction medium manufactured from renewable sources are unique features of this method.


Sign in / Sign up

Export Citation Format

Share Document