Synthese und Kristallstruktur von NaMgl,64Cu0,36V3O10/ Synthesis and Crystal Structure of NaMgl,64Cu0,36V3O10

1994 ◽  
Vol 49 (10) ◽  
pp. 1329-1333 ◽  
Author(s):  
F.-D. Martin ◽  
Hk. Müller-Buschbaum

Abstract Single crystals of NaMg1.64Cu0.36V3O10 have been prepared by heating mixtures of Na2CO3, MgCO3, CuO and V2O5 above the melting point. The yellow crystals show triclinic symmetry, space group Ci1-P1̅, a = 6.726(8), b = 6.743(7), c = 9.625(2) Å, α = 100.705(9), β = 104.57(1), γ = 101.700(9)°, Z = 2. NaMg1.64Cu0.36V3O10 represents a new structure type showing V3O10 groups, a statistical distribution of Mg2+ and Cu2+ on two point positions, and Na+ in an irregular coordination.

1995 ◽  
Vol 50 (5) ◽  
pp. 717-720 ◽  
Author(s):  
H. Szillat ◽  
Hk. Müller-Buschbaum

Abstract Single crystals of the hitherto unknown compound CuSbMo2O8 were prepared by recrystallization from melts in closed copper tubes and investigated by X-ray diffractometer technique. CuSbMo2O8 crystallizes in a new structure type with monoclinic symmetry, space group C62h - I12/a1, a = 5.554(2), b = 4.916(1), c = 21.519(4) Å, β = 93.42(3)°, Z = 4. The crystal structure shows SbIII in a one-sided coordination by four oxygen. Molybdenum shows the rare octahedral coordination by oxygen. MoO6 and CuO6 octahedra form triple layers stacked and connected by Sb ions along [001].


1994 ◽  
Vol 49 (3) ◽  
pp. 350-354 ◽  
Author(s):  
Holger Szillat ◽  
Hanskarl Müller-Buschbaum

Abstract Single crystals of KCuHo2Mo4O16 have been prepared by recrystallisation from melts and investigated by X-ray diffractometer techniques. The compound crystallizes with monoclinic symmetry, space group C 2/c, a = 521.6(1), b = 1251.3(2), c = 1953.1(2) pm, β = 92.903(18)°, Z = 4. KCuHo2Mo4O16 represents a new structure type characterized by HoO8 and alternate CuO6/KO10 polyhedra chains. The connection of these polyhedra chains to each other and by MoO4 tetrahedra is described and the crystal structure discussed with respect to related compounds of the CuLnMo2O8 and KLnMo2O8 types.


1994 ◽  
Vol 49 (8) ◽  
pp. 1145-1149 ◽  
Author(s):  
Holger Szillat ◽  
Hanskarl Müller-Buschbaum

Single crystals of Cu0.25Ho1.25W2O8 were prepared by recrystallization from melts and investigated by X-ray diffractometer technique. Cu0.25Ho1.25W2O8 crystallizes with mono­clinic symmetry, space group C2/c, a = 19.123, b = 5.613, c = 11.479 Å, β = 111.44°. Z = 8. It represents a new structure type characterized by W4O18 groups and Cu+/Ho3+ at one point position in statistical distribution. Cu+/Ho3+ show an octahedral coordination. Another point position is occupied by Ho3+ with C. N. = 7.


1995 ◽  
Vol 50 (1) ◽  
pp. 51-55 ◽  
Author(s):  
F.-D. Martin ◽  
Hk. Müller-Buschbaum

Single crystals of NaFe3V3O12 have been prepared by solid state reaction below the melting point of the reaction mixture. This compound is isotypic to the mineral Howardevansite but shows lower triclinic symmetry, space group C11–P1, a = 6.757(2), b = 8.155(2), c = 9.816(3) Å, α = 106.05(2), β = 104.401(9), γ = 102.09(2)°, Z = 2. The acentric space group is caused by the sodium positions, all other atoms comply with the space group P̄ of Howardevansite. The different ions are coordinated by O2- forming VO4 tetrahedra, FeO6 octahedra, trigonal FeO5 bipyramids and irregular NaO5 and NaO7 polyhedra, respectively. The crystal chemistry is discussed with respect to Howardevansite.


1995 ◽  
Vol 50 (8) ◽  
pp. 1146-1150 ◽  
Author(s):  
Anne Utzolino ◽  
Karsten Bluhm

Single crystals of the compounds MnFe(BO3)O (I) and MnAl0.5Y0.5(BO3)O (II), were obtained by a B2O3 flux technique. I crystallizes with orthorhombic symmetry, space group D162h -Pnma (Nr.62), a = 939.92; b = 319.41; c = 939.11 pm; Z = 4 and II with monoclinic symmetry, space group C52h-P21/n (Nr. 14). a = 325.6; b = 955.1; c = 929.2 pm; β = 90.70° ; Z = 4. I is isotypic to the mineral Warwickite, while II is a distorded variant of this structure. All metal ions are octahedrally coordinated. Both structures contain isolated, trigonal planar BO3 units and oxygen atoms that are not coordinated to boron.


1994 ◽  
Vol 49 (3) ◽  
pp. 355-359 ◽  
Author(s):  
F.-D. Martin ◽  
H. Müller-Buschbaum

Abstract Single crystals of KBaCuV2O7Cl have been prepared by a flux technique and investigated by X-ray analysis. The compound crystallizes with tetragonal symmetry, space group C24v-P4 bm, a = 8.8581, c = 5.4711 Å, Z = 2. The crystal structure shows Cu2+ within a one sided strongly distorted CuO4Cl2 octahedron. The copper ion is shifted towards the nearer Cl- neighbour to form a CuO4Cl square pyramid. Two VO4 tetrahedra are connected to give stretched V2O7 double tetrahedra, and linked in planes via the oxygen corners of the CuO4Cl pyramids. The crystal structure and the structure of the complex BaO8Cl2 polyhedron are discussed.


1995 ◽  
Vol 50 (6) ◽  
pp. 879-883 ◽  
Author(s):  
H. Szillat ◽  
Hk. Müller-Buschbaum

Single crystals of Ag0.5Cu3V0,5Mo2,5O12 have been prepared by crystallization from melts and investigated by X -ray methods. They crystallize with triclinic symmetry, space group Ci1 -P 1̄ , a = 6.797(6), b = 8.575(6), c = 9.897(7) Å, α = 103.47(6), β = 103.69(6), γ = 101.48(6)° and Z = 4. The crystal structure is characterized by chains of edge-sharing CuO6 octahedra and CuO5 pyramids. Special features of this com pound are the square planar surrounding of Ag+ by O2− and a statistical distribution of molybdenum and vanadium at one point position.


1995 ◽  
Vol 50 (10) ◽  
pp. 1445-1449 ◽  
Author(s):  
Silke Busche ◽  
Karsten Bluhm

The first zinc containing pyroborates Ni1,5Zn0,5(B2O5) (A ) and Co1,5Zn0,5(B2O5) (B) were prepared by using a B2O3 flux technique. Single crystals were investigated by X-ray diffraction and showed triclinic symmetry, space group Ci1-P1̅. The structures are isotypic to Co2(B2O5) with the lattice parameters (A ) a = 331.28(6), b = 613.87(11), c = 922.2(2), α = 104.067(11) °, β = 90.672(13) °, γ = 92.413(12) ° and (B) a = 315.89(2), b = 612.84(6), c = 927.72(6), α = 104.103(7) °, β = 91.020(6) °, γ = 92.540(7) °, Z = 2. All metal point positions show an octahedral oxygen coordination and a partly statistical distribution of Zn2+ and Ni2+ or Co2+, respectively. Isolated nearly planar B2O5 units connect ribbons consisting of edge sharing metal octahedra.


1996 ◽  
Vol 51 (2) ◽  
pp. 229-232 ◽  
Author(s):  
S. Münchau ◽  
Hk. Müller-Buschbaum

Abstract Single crystals of Cd1.35Cu1.65(PO4)2 have been prepared by solid state reactions below the melting point of the starting compounds. The light green crystals crystallize with monoclinic symmetry, space group C52h-P21/c , a = 9.062(2), b = 11.669(2), c = 5.950(2) Å , β = 97.88(2)°, Z = 4. Cd1.35Cu1.65(PO4)2 shows relationship to the mineral graftonite. The crystal structure is characterized by nets of corner connected Cd2O12 polyhedra. One point position is statistically occupied by Cd2+ and Cu2+ ions.


1995 ◽  
Vol 50 (11) ◽  
pp. 1653-1657 ◽  
Author(s):  
Anne Utzolino ◽  
Karsten Bluhm

Single crystals of Co1.5Ti0.5(BO3)O (I) and Co1.5Zr0.5(BO3)O (II) were obtained by a B2O3 flux technique. Both compounds crystallize with orthorhombic symmetry, space group D162h-Pnma (Nr. 62), I a = 928.1; b = 311.1; c = 940.1 pm; Z = 4 and II a = 949.5; b = 323.42; c = 934.7 pm; Z = 4. The compounds are isotypic to the mineral warwickite. All metal ions are octahedrally coordinated by oxygen ions. The structure contains isolated, trigonal planar BO3 units and oxygen that is not coordinated to boron.


Sign in / Sign up

Export Citation Format

Share Document