Zur Darstellung und Kristallstruktur eines neuen Kupfer-Antimon-Oxomolybdats: CuSbMo2O8 / On the Synthesis and Crystal Structure of a New Copper Antimony Oxomolybdate: CuSbMo2O8

1995 ◽  
Vol 50 (5) ◽  
pp. 717-720 ◽  
Author(s):  
H. Szillat ◽  
Hk. Müller-Buschbaum

Abstract Single crystals of the hitherto unknown compound CuSbMo2O8 were prepared by recrystallization from melts in closed copper tubes and investigated by X-ray diffractometer technique. CuSbMo2O8 crystallizes in a new structure type with monoclinic symmetry, space group C62h - I12/a1, a = 5.554(2), b = 4.916(1), c = 21.519(4) Å, β = 93.42(3)°, Z = 4. The crystal structure shows SbIII in a one-sided coordination by four oxygen. Molybdenum shows the rare octahedral coordination by oxygen. MoO6 and CuO6 octahedra form triple layers stacked and connected by Sb ions along [001].

1994 ◽  
Vol 49 (3) ◽  
pp. 350-354 ◽  
Author(s):  
Holger Szillat ◽  
Hanskarl Müller-Buschbaum

Abstract Single crystals of KCuHo2Mo4O16 have been prepared by recrystallisation from melts and investigated by X-ray diffractometer techniques. The compound crystallizes with monoclinic symmetry, space group C 2/c, a = 521.6(1), b = 1251.3(2), c = 1953.1(2) pm, β = 92.903(18)°, Z = 4. KCuHo2Mo4O16 represents a new structure type characterized by HoO8 and alternate CuO6/KO10 polyhedra chains. The connection of these polyhedra chains to each other and by MoO4 tetrahedra is described and the crystal structure discussed with respect to related compounds of the CuLnMo2O8 and KLnMo2O8 types.


1994 ◽  
Vol 49 (8) ◽  
pp. 1145-1149 ◽  
Author(s):  
Holger Szillat ◽  
Hanskarl Müller-Buschbaum

Single crystals of Cu0.25Ho1.25W2O8 were prepared by recrystallization from melts and investigated by X-ray diffractometer technique. Cu0.25Ho1.25W2O8 crystallizes with mono­clinic symmetry, space group C2/c, a = 19.123, b = 5.613, c = 11.479 Å, β = 111.44°. Z = 8. It represents a new structure type characterized by W4O18 groups and Cu+/Ho3+ at one point position in statistical distribution. Cu+/Ho3+ show an octahedral coordination. Another point position is occupied by Ho3+ with C. N. = 7.


1995 ◽  
Vol 50 (2) ◽  
pp. 252-256 ◽  
Author(s):  
H. Szillat ◽  
Hk. Müller-Buschbaum

Single crystals of AgKCu3Mo4O16 have been prepared by crystallization from melts and investigated by X-ray diffractometer techniques. This compound crystallizes with monoclinic symmetry, space group C2h5 - P21/c, a = 5.056(1), b = 14.546(4), c = 19.858(9) Å, β = 86.64(5)°, Z = 4. The crystal structure of AgKCu3Mo4O16 is closely related to K2Cu3Mo4O16 showing ribbons of edge-sharing CuO6 and AgO7 polyhedra. The ribbons are linked by tetrahedrally coordinated molybdenum and K2O10 groups. Another kind of MoO4 tetrahedra occupies the cavities inside the ribbons. The crystal structure and the coordination of silver, copper, potassium and molybdenum by oxygen are discussed with respect to K2Cu3Mo4O16.


1995 ◽  
Vol 50 (8) ◽  
pp. 1146-1150 ◽  
Author(s):  
Anne Utzolino ◽  
Karsten Bluhm

Single crystals of the compounds MnFe(BO3)O (I) and MnAl0.5Y0.5(BO3)O (II), were obtained by a B2O3 flux technique. I crystallizes with orthorhombic symmetry, space group D162h -Pnma (Nr.62), a = 939.92; b = 319.41; c = 939.11 pm; Z = 4 and II with monoclinic symmetry, space group C52h-P21/n (Nr. 14). a = 325.6; b = 955.1; c = 929.2 pm; β = 90.70° ; Z = 4. I is isotypic to the mineral Warwickite, while II is a distorded variant of this structure. All metal ions are octahedrally coordinated. Both structures contain isolated, trigonal planar BO3 units and oxygen atoms that are not coordinated to boron.


1994 ◽  
Vol 49 (3) ◽  
pp. 355-359 ◽  
Author(s):  
F.-D. Martin ◽  
H. Müller-Buschbaum

Abstract Single crystals of KBaCuV2O7Cl have been prepared by a flux technique and investigated by X-ray analysis. The compound crystallizes with tetragonal symmetry, space group C24v-P4 bm, a = 8.8581, c = 5.4711 Å, Z = 2. The crystal structure shows Cu2+ within a one sided strongly distorted CuO4Cl2 octahedron. The copper ion is shifted towards the nearer Cl- neighbour to form a CuO4Cl square pyramid. Two VO4 tetrahedra are connected to give stretched V2O7 double tetrahedra, and linked in planes via the oxygen corners of the CuO4Cl pyramids. The crystal structure and the structure of the complex BaO8Cl2 polyhedron are discussed.


1998 ◽  
Vol 53 (3) ◽  
pp. 287-290 ◽  
Author(s):  
B. Wedel ◽  
L. Wulff ◽  
Hk. Müller-Buschbaum

Abstract Single crystals of Pb2TeO5 have been prepared by flux techniques. X-ray investigations showed a new crystal structure with monoclinic symmetry, space group C4S -Cc, a = 13.099(3), b = 5.714(1), c = 7.520(2) Å, β = 123,80(3)°, Z = 4. Pb2TeO5 is characterized by 1∞[TeO5] chains of octahedra isolated from each other and incorporated into an edge, corner and face connected frame of PbO7 polyhedra. Possible positions of the lone pair of electrons of Pb2+ are estimated by calculations of Coulomb terms of lattice energy.


1995 ◽  
Vol 50 (10) ◽  
pp. 1445-1449 ◽  
Author(s):  
Silke Busche ◽  
Karsten Bluhm

The first zinc containing pyroborates Ni1,5Zn0,5(B2O5) (A ) and Co1,5Zn0,5(B2O5) (B) were prepared by using a B2O3 flux technique. Single crystals were investigated by X-ray diffraction and showed triclinic symmetry, space group Ci1-P1̅. The structures are isotypic to Co2(B2O5) with the lattice parameters (A ) a = 331.28(6), b = 613.87(11), c = 922.2(2), α = 104.067(11) °, β = 90.672(13) °, γ = 92.413(12) ° and (B) a = 315.89(2), b = 612.84(6), c = 927.72(6), α = 104.103(7) °, β = 91.020(6) °, γ = 92.540(7) °, Z = 2. All metal point positions show an octahedral oxygen coordination and a partly statistical distribution of Zn2+ and Ni2+ or Co2+, respectively. Isolated nearly planar B2O5 units connect ribbons consisting of edge sharing metal octahedra.


1996 ◽  
Vol 51 (7) ◽  
pp. 912-916 ◽  
Author(s):  
Anne Utzolino ◽  
Karsten Bluhm

The compounds MnCo(B2O5) (I) and MnMg(B2O5) (II) were prepared by using B2O3 flux techniques in an argon atmosphere. X-ray investigations on single crystals showed triclinic symmetry, space group Ci1 - P1̄, I: a = 320.94(10), b = 619.20(11), c = 939.0(2) pm, a = 104.38(2)°, β = 90.76(2)°, γ = 92.046(14)° and II: a = 318.97(7), b = 619.8(2), c = 936.7(2) pm, α = 104.47(2)°, β = 90.60(2)°, γ = 91.98(2)° Z = 2. Their structures are isotypic with Co2(B2O5). All metal ions are octahedrally coordinated by six oxygen atoms. The structures contain diborate anions B2O54-. Each boron atom is threefold coordinated by oxygen.


1996 ◽  
Vol 51 (6) ◽  
pp. 822-825 ◽  
Author(s):  
S. Frenzen ◽  
Hk. Müller-Buschbaum

Abstract Single crystals of Na3Cd2IrO6 have been prepared by crystallization from melts in closed silver tubes. The crystal structure was investigated by X-ray techniques. Na3Cd2IrO6, crystallizes with monoclinic symmetry, space group C32h-C2/m; a = 5.663(2), b = 9.783(3), c = 5.689(2) Å, β = 109.95(2)°, Z = 2. It is isotypic to M+5A7+O6 (M = Li, Na; A = Re, Os) and shows relations to the sodium chloride structure in spite of an ordered distribution of Na+, Cd2+ and Ir5+


1994 ◽  
Vol 49 (10) ◽  
pp. 1329-1333 ◽  
Author(s):  
F.-D. Martin ◽  
Hk. Müller-Buschbaum

Abstract Single crystals of NaMg1.64Cu0.36V3O10 have been prepared by heating mixtures of Na2CO3, MgCO3, CuO and V2O5 above the melting point. The yellow crystals show triclinic symmetry, space group Ci1-P1̅, a = 6.726(8), b = 6.743(7), c = 9.625(2) Å, α = 100.705(9), β = 104.57(1), γ = 101.700(9)°, Z = 2. NaMg1.64Cu0.36V3O10 represents a new structure type showing V3O10 groups, a statistical distribution of Mg2+ and Cu2+ on two point positions, and Na+ in an irregular coordination.


Sign in / Sign up

Export Citation Format

Share Document