Zur Kenntnis eines Barium-Lanthanoid-Aluminat-Zinkats: BaLuAlZn3O7 mit einem Anhang zu Ba2Er2Zn8O13/On a Barium Rare Earth Aluminate Zincate: BaLuAlZn3O7 with a Note on Ba2Er2Zn8O13

1996 ◽  
Vol 51 (3) ◽  
pp. 343-347 ◽  
Author(s):  
Ch. Rabbow ◽  
Hk. Müller-Buschbaum

Abstract Reactions of BaCO3, ZnO, Lu2O3 and Al2O3 mixtures at temperatures up to 1500 °C led to small and colourless rods of BaLuAlZn3O7. The new compound crystallizes with hexagonal symmetry, space group C6v4 -P63mc, a = 6.273, c =10.161 Å, Z = 2. In spite of small differences in the oxygen content BaLuAlZn3O7 is isotypic to Ba2Ln2Zn8O13. The crystal structure shows Zn2+ with tetrahedral, Lu3+ with octahedral and Ba2+ with anticuboctahedral coordination by O2-. It has been shown that parts of the [Zn3AlO7]5- network are fragments of the ZnO structure. In consequence one oxygen atom is fourfold coordinated by zinc/aluminium. The space group of Ba2Ln2Zn8O13 must be corrected to C6v4 -P63mc.

1997 ◽  
Vol 52 (4) ◽  
pp. 449-452 ◽  
Author(s):  
J.-P. Werner ◽  
Hk. Müller-Buschbaum

Abstract Single crystals of Ln4[Al12O24](Pb4O4)2 (Ln = Nd, Sm) have been prepared by flux techniques. The compounds crystallize with cubic symmetry, space group Oh-Pn3̄m, aNd = 9.514(1), aSm = 9.481(1) Å, Z = 1. The crystal structure is characterized by a [Al12O24]12- framework. Four of the eight six-membered rings of AlO4-tetrahedra per sodalite cage are centered by Ln3+ ions. The cages of the resulting electrically neutral network are filled with [Pb4O4]±0 heterocubane units. Oxygen of the heterocubane units completes the coordination spheres of the rare earth ions to hexagonal bipyramids.


1996 ◽  
Vol 51 (2) ◽  
pp. 240-244
Author(s):  
Hk. Müller-Buschbaum ◽  
St. Gallinat

Abstract Single crystals of (I) CuDyMo2O8 and (II) CuYbMo2O8 have been prepared by crystalli­sation from melts. Both com pounds crystallize with orthorhombic symmetry, space group D152h-Pbca with (I): a = 10.195(1), b = 9.721(2), c = 14.563(3); (II): a = 10.094(6), b = 9.628(9), c = 14.467(8) Å, Z = 8. The crystal structure is characterized by a triangular CuO3-polygon, a square antiprismatic coordination around the Rare Earth ions and the typical Mo O4 tetra­ hedra.


1996 ◽  
Vol 51 (3) ◽  
pp. 450-452 ◽  

Abstract Single crystals of (Cu,Mn)UMo3O12 have been prepared in sealed copper tubes. X-ray investigations lead to hexagonal symmetry, space group C6h2-P63/m a = 9.7895 (13), c = 6.202(1) Å , z = 2. (Cu,Mn)UMo3O12 is isotypic to CdThMo3O12. Calculations of the Coulomb terms of lattice energy with respect to different oxidation states of copper, molybdenum and uranium and the previously described pair of isotypic compounds of CdThMo3O12 to Na2ThRe6O24 are discussed.


1996 ◽  
Vol 51 (6) ◽  
pp. 883-887 ◽  
Author(s):  
J.-P. Werner ◽  
Hk. Müller-Buschbaum

Abstract Single Crystals of Pb2LnAl3O8 (Ln = Eu, Gd) have been prepared by flux techniques. The compounds crystallize with cubic symmetry, space group Oh-Pn3̅m, a(Eu) = 9.4578(5), a(Gd) = 9.4448(7) Å, Z = 4. The crystal structure is characterized by heterocubane units of the type Pb4O4 and hexagonal bipyramids of oxygen around the rare earth ions. These components form a network made of macro polyhedra of the type Pb4O4- LnO6- Pb4O4


Inorganics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 45 ◽  
Author(s):  
Maximilian Knies ◽  
Martin Kaiser ◽  
Mai Lê Anh ◽  
Anastasia Efimova ◽  
Thomas Doert ◽  
...  

The reaction of Bi, BiCl3, and TlCl in the ionic liquid [BMIm]Cl·4AlCl3 (BMIm = 1-n-butyl-3-methylimidazolium) at 180 °C yielded air-sensitive black crystals of (Bi8)Tl[AlCl4]3. X-ray diffraction on single crystals at room temperature revealed a structure containing [ Tl ( AlCl 4 ) 3 ] ∞ 1 2 − strands separated by isolated Bi82+ square antiprisms. The thallium(I) ion is coordinated by twelve Cl− ions of six [AlCl4]− groups, resulting in a chain of face-sharing [TlCl12]11− icosahedra. The Bi82+ polycation is disordered, simulating a threefold axis through its center and overall hexagonal symmetry (space group P63/m). Slowly cooling the crystals to 170 K resulted in increased order in the Bi8 cluster orientations. An ordered structure model in a supercell with a’ = 2a, b’ = 2b, c’ = 3c and the space group P65 was refined. The structure resembles a hexagonal perovskite, with complex groups in place of simple ions.


Author(s):  
Takaharu Araki

AbstractAn approach to structure determination for a crystal from component crystals in equal volume fractions, the most difficult case to the solution, is outlined with precautions for stepwise initialization. Proper selection of a crystal geometrical symmetry space group from a corresponding twin anti-symmetry space group and interpretation of a Patterson space are indispensable prerequisite for the solution. Observations unique to the case are briefly described in a sequence of Patterson synthesis, Fourier approach and least-squares refinement for efficient interpretation and processing.


2002 ◽  
Vol 57 (12) ◽  
pp. 1454-1460 ◽  
Author(s):  
Otilia Costișor ◽  
Ramona Tudose ◽  
Ingo Pantenburg ◽  
Gerd Meyer

The synthesis of the Mannich base N,N’-bis(antipyryl-4-methyl)-piperazine (BAMP) (1), its crystal structure as well as the synthesis and the crystal structure of the copper complex Cu(BAMP)(ClO4)2 (2) are reported. C28H34N6O2 ∙ 4H2O (BAMP ∙ 4H2O) crystallizes with triclinic symmetry, space group P1̄, lattice parameters: a = 704,9(2), b = 983,4(2), c = 1198,9(3) pm, α = 68,72°, β = 73,62°, γ = 78,49°. The copper-complex Cu(BAMP)(ClO4)2 crystallizes with tetragonal symmetry, space group P42/n, lattice parameters: a = 2295,1(3), c = 1412,2(2) pm. The copper(II) atom is five-coordinate by the two nitrogen atoms belonging to the piperazine ring and the oxygen atoms of the antipyrinemoieties. The geometry of the copper(II) atom can be described as a square-based pyramid with the N2O2 donor atoms of BAMP forming the basal plane and an oxygen atom of the neighbouring complex molecule occupying the apical position. BAMP acts as a tetradentate ligand, which incorporates a piperazine-fused ring. The structural parameters illustrate well the reinforcing effect exerted by the double “straps” of the piperazine molecule.


1995 ◽  
Vol 50 (2) ◽  
pp. 252-256 ◽  
Author(s):  
H. Szillat ◽  
Hk. Müller-Buschbaum

Single crystals of AgKCu3Mo4O16 have been prepared by crystallization from melts and investigated by X-ray diffractometer techniques. This compound crystallizes with monoclinic symmetry, space group C2h5 - P21/c, a = 5.056(1), b = 14.546(4), c = 19.858(9) Å, β = 86.64(5)°, Z = 4. The crystal structure of AgKCu3Mo4O16 is closely related to K2Cu3Mo4O16 showing ribbons of edge-sharing CuO6 and AgO7 polyhedra. The ribbons are linked by tetrahedrally coordinated molybdenum and K2O10 groups. Another kind of MoO4 tetrahedra occupies the cavities inside the ribbons. The crystal structure and the coordination of silver, copper, potassium and molybdenum by oxygen are discussed with respect to K2Cu3Mo4O16.


1995 ◽  
Vol 50 (4) ◽  
pp. 585-588 ◽  
Author(s):  
S. Frenzen ◽  
Hk. Müller-Buschbaum

Single crystals of Ba9Ru3.2Mn5.8O27 have been prepared by flux techniques. X-ray four circle diffractometer measurements led to trigonal (rhombohedral) symmetry, space group D53d - R3̄̄̄m , a = 5.7043(5), c = 21.255(4) Å , Z = 1. This phase is isotypic to BaRuO3. The crystal structure and the occupation of the M3O12 triple octahedra by ruthenium and manganese are discussed with respect to other oxides containing M3O12 groups in an ordered and disordered way.


Sign in / Sign up

Export Citation Format

Share Document