Preparation and Crystal Structures of the Isotypic Compounds CdXO4 · 2 HgO (X = S, Se)

2004 ◽  
Vol 59 (3) ◽  
pp. 281-285 ◽  
Author(s):  
Matthias Weil

Colourless single crystals of the compounds CdXO4 · 2 HgO (X = S, Se) were obtained under hydrothermal conditions (250 °C, 5 d), starting from stoichiometric amounts of HgO, CdSO4 ·7H2O and CdSeO4 ·2H2O, respectively. The crystal structures were determined from X-ray diffraction data sets. The CdXO4 · 2HgO compounds crystallise isotypically with two formula units in space group P1̅ (# 2) [CdSO4 · 2HgO (CdSeO4 · 2HgO): a = 6.793(2) (6.9097(5)) Å , b = 7.205(2) (7.1786(6)) Å , c=7.359(2) (7.4556(6)) Å ,α =73.224(6) (74.586(2))°, β =66.505(6) (68.229(1))°, γ =63.054(5) (63.886(1))°, 1670 (1786) structure factors, 92 parameters, R[F2 > 2σ(F2)] = 0.0379 (0.0244)] and are made up from zig-zag [O-Hg-O]∞ chains with very short bonds of d̅(Hg-O) 2.025 Å , distorted [CdO6] octahedra (d̅(Cd-O)= 2.297 Å ), and XO4 tetrahedra (d̅(S-O)= 1.458 Å , d̅(Se-O)= 1.633 Å ) as the main building blocks. The CdXO4 ·2HgO compounds reveal no structural relationship with the corresponding HgXO4 ·2HgO phases

1976 ◽  
Vol 31 (6) ◽  
pp. 885 ◽  
Author(s):  
H.-L. Keller.

Single crystals of TlPb2Cl5 and NH4Pb2Cl5 were prepared. X-ray diffraction data confirm the space group C2h5—P21/c (No. 14). Crystal structure determination shows a new typ, belonging to the PbCl2-structure.


Author(s):  
Michel Fleck ◽  
Ekkehart Tillmanns ◽  
Ladislav Bohatý ◽  
Peter Held

AbstractThe crystal structures of eight different L-malates have been determined and refined from single-crystal X-ray diffraction data. The compounds are the monoclinic (space groupIn addition, for all the compounds, powder diffraction data were collected, analysed and submitted to the powder diffraction file (PDF).


2006 ◽  
Vol 61 (6) ◽  
pp. 708-714 ◽  
Author(s):  
Berthold Stöger ◽  
Matthias Weil

Single crystals of α-HgCrO4, β -HgCrO4 and HgCrO4 ・ H2O were obtained by reacting yellow HgO in chromic acid of various concentrations under hydrothermal conditions at 200 °C (4 d). All crystal structures were solved and refined from single crystal diffractometer data sets [α-HgCrO4: P21/n, Z = 4, a = 5.5079(8), b = 8.5266(12), c = 7.3503(10) Å , β = 94.022(3)°, 955 structure factors, R[F2 > 2σ (F2)] = 0.0296; β -HgCrO4: Cmcm, Z = 4, a = 5.7187(9), b = 9.0169(14), c = 7.0114(11) Å, 361 structure factors, R[F2 > 2σ (F2)] = 0.0275; HgCrO4 ・ H2O: P1̅, Z = 2, a=5.6157(15), b =6.1115(16), c= 7.590(2) Å , α =108.850(5), β =91.666(5), γ =116.569(5)°, 1235 structure factors, R[F2 > 2σ (F2)] = 0.0316]. The previously reported structure of α-HgCrO4 has been re-determined. It contains distorted [HgO7] pentagonal bipyramids in which the short bonds are directed towards the apices. The new polymorph β -HgCrO4 adopts the CrVO4 (β -CrPO4) structure type and is composed of slightly distorted [HgO6] octahedra. The previously unknown monohydrate HgCrO4 ・ H2O crystallizes in an unique structure and is composed of one nearly regular [HgO4(H2O)2] octahedron and one considerably distorted [HgO6] octahedron. All three structures contain tetrahedral chromate anions CrO42− as the second building units with average Cr-O distances of ca. 1.65 Å


2011 ◽  
Vol 66 (4) ◽  
pp. 359-365 ◽  
Author(s):  
Olaf Reckeweg ◽  
Armin Schulz ◽  
Francis J. DiSalvo

Single crystals of Eu5(BO3)3Cl were obtained by serendipity by reacting Eu2O3 and Mg with B2O3 at 1300 K in the presence of an NaCl melt for 13 h in silica-jacketed Nb ampoules. Ba5(BO3)3X (X = Cl, Br) crystals were formed by direct synthesis from appropriate amounts of Ba(OH)2, H3BO3 and the respective barium halide (hydrate) in alumina crucibles kept in the open atmosphere at 1300 K for 13 h. The crystal structures of the title compounds were determined with single-crystal X-ray diffraction. All compounds crystallize isotypically to Sr5(BO3)3Cl in the orthorhombic space group C2221 (no. 20, Z = 4) with the lattice parameters a = 1000.34(7), b = 1419.00(9), c = 739.48(5) pm for Eu5(BO3)3Cl, a = 1045.49(5), b = 1487.89(8), c = 787.01(4) pm for Ba5(BO3)3Cl, and a = 1048.76(7), b = 1481.13(9) and c = 801.22(5) pm for Ba5(BO3)3Br. The Raman spectra of all compounds were acquired and are presented and compared to literature data. The incremental volume of the orthoborate (BO3)3− anion has been determined and is compared to the Biltz volume


2015 ◽  
Vol 70 (4) ◽  
pp. 207-214 ◽  
Author(s):  
Daniela Vitzthum ◽  
Stefanie A. Hering ◽  
Lukas Perfler ◽  
Hubert Huppertz

AbstractOrthorhombic dysprosium orthogallate DyGaO3 and trigonal gallium orthoborate GaBO3 were synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 8.5 GPa/1350 °C and 8 GPa/700 °C, respectively. Both crystal structures could be determined by single-crystal X-ray diffraction data collected at room temperature. The orthorhombic dysprosium orthogallate crystallizes in the space group Pnma (Z = 4) with the parameters a = 552.6(2), b = 754.5(2), c = 527.7(2) pm, V = 0.22002(8) nm3, R1 = 0.0309, and wR2 = 0.0662 (all data) and the trigonal compound GaBO3 in the space group R3̅c (Z = 6) with the parameters a = 457.10(6), c = 1419.2(3) pm, V = 0.25681(7) nm3, R1 = 0.0147, and wR2 = 0.0356 (all data).


1975 ◽  
Vol 30 (3-4) ◽  
pp. 277-278 ◽  
Author(s):  
Hans-L. Keller ◽  
Karl-H. Meier ◽  
Hk. Müller-Buschbaum

Single crystals of SrPbO3 could be prepared by oxygen-high-pressure-synthesis (PO2 > 3500 at, t = 450°C). Single crystal X-ray diffraction data confirm the space group D2h16-Pnma. SrPbO3 belongs to the orthorhombic distorted Perowskit type with a = 5.964, b = 8.320, c = 5.860 Å. The atomic positions were refined.


Author(s):  
G. Dewald ◽  
M. Hanack ◽  
E.-M. Peters ◽  
L. Walz

AbstractThe crystal and molecular structures of dimorphic 10,10′-(1,4-phenylene-dimethylidene)-bis-9,10-H-anthracenone (1) have been determined using X-ray diffraction data. The compound crystallizes either in the monoclinic space groupSince all non-hydrogen atoms are of pure


2007 ◽  
Vol 40 (4) ◽  
pp. 702-709 ◽  
Author(s):  
Michela Brunelli ◽  
Marcus A. Neumann ◽  
Andrew N. Fitch ◽  
Asiloé J. Mora

The crystal structures of bicyclo[3.3.1]nonane-2,6-dione and bicyclo[3.3.1]nonane-3,7-dione have been solved by direct methods and by direct-space simulated annealing, respectively, from powder synchrotron X-ray diffraction data. Both compounds have a transition to a face-centred-cubic orientationally disordered phase (phase I) near 363 K, as shown by differential scanning calorimetry and powder diffraction measurements. Phase II of bicyclo[3.3.1]nonane-2,6-dione, which occurs below 363 K, is monoclinic, space groupC2/c, witha= 7.38042 (4),b= 10.38220 (5),c= 9.75092 (5) Å and β = 95.359 (1)° at 80 K. Phase II of bicyclo[3.3.1]nonane-3,7-dione, which occurs below 365 K, is tetragonal, space groupP41212, witha= 6.8558 (1) andc= 16.9375 (1) Å at 100 K. This phase coexists in a biphasic mixture with a minor monoclinic phase II′ [a= 11.450 (6),b = 20.583 (1),c= 6.3779 (3) Å, β = 94.7555 (5)°, at 100 K] detected in the sample, which impeded indexing with standard programs. The crystal structures of phases II were solved by direct methods and by direct-space simulated annealing, employing powder synchrotron X-ray diffraction data of increased instrumental intensity and resolution from the ID31 beamline at the ESRF, and novel indexing algorithms.Ab initiomolecular orbital calculations on the two systems are reported. In the solid state, the molecules pack in chair–chair conformation; molecular structures and packing are discussed.


2003 ◽  
Vol 59 (5) ◽  
pp. 606-610 ◽  
Author(s):  
Digamber G. Porob ◽  
T. N. Guru Row

A series of M 0.5Bi3P2O10 compounds with M = Ca, Sr, Ba and Pb have been synthesized in MO–Bi2O3–P2O5 ternary systems by the ceramic method and the crystal structures were then solved using single-crystal X-ray diffraction data. These compounds are isostructural with Bi6.67P4O20 (triclinic, space group P\bar 1, Z = 2). The structures consist of infinite chains of Bi2O2 units along the c axis formed by linking BiO8 and BiO6 polyhedra. These chains are interconnected by MO8 polyhedra forming two-dimensional layers in the ac plane. The phosphate tetrahedra are sandwiched between these layers.


2019 ◽  
Vol 74 (3) ◽  
pp. 289-295 ◽  
Author(s):  
Nataliya Gulay ◽  
Yuriy Tyvanchuk ◽  
Marek Daszkiewicz ◽  
Bohdan Stel’makhovych ◽  
Yaroslav Kalychak

AbstractTwo compounds in the Sc-Co-In system were obtained by arc-melting of the pure metals and their crystal structures have been determined using single crystal X-ray diffraction data. The structure of Sc3Co1.64In4 (space group P6̅, а=7.6702(5), c=3.3595(2) Å, Z=1, R1=0.0160, wR2=0.0301) belongs to the Lu3Co2−xIn4 type structure, which is closely related to the ZrNiAl and Lu3CoGa5 types. The structure of Sc10Co9In20 (space group P4/nmm, а=12.8331(1), c=9.0226(1) Å, Z=2, R1=0.0203, wR2=0.0465) belongs to the Ho10Ni9In20 type, which is closely related to HfNiGa2.


Sign in / Sign up

Export Citation Format

Share Document