A Three-dimensional Manganese(II) 1,2,4-Benzenetricarboxylate Hydroxide Framework with Mn–O Inorganic Sheets: Hydrothermal Synthesis and Crystal Structure

2008 ◽  
Vol 63 (11) ◽  
pp. 1339-1342 ◽  
Author(s):  
Shuxi Zhou ◽  
Yanxiong Ke ◽  
Hongliang Zou ◽  
Tianhua Liu ◽  
Fang Zhu ◽  
...  

Abstract Utilizing unsymmetrical 1,2,4-benzenetricarboxylate (1,2,4-BTC) as a ligand, a complex [Mn2.5(1,2,4-BTC)- (OH)2(H2O)] was synthesized by hydrothermal reaction and characterized by single crystal X-ray diffraction. The coordination polymer crystallizes in the triclinic space group P1̅, with cell parameters a = 5.7702(5), b = 8.0269(6), c = 12.1378(9) Å, α = 88.000(1)°, β = 81.493(1)◦, γ = 88.569(1)°, and Z = 2. In the the crystal, there are Mn- O-Mn sheets which are further connected through the 1,2,4-BTC ligands into a 3D framework, which is rare in the coordination chemistry originating from transition metal ions and unsymmetrical polycarboxylates.

1994 ◽  
Vol 49 (12) ◽  
pp. 1654-1658 ◽  
Author(s):  
Markus Wieber ◽  
Stefan Lang ◽  
Stefan Rohse ◽  
Ralph Habersack ◽  
Christian Burschka

The synthesis of triphenyltelluroniumsulfide (Ph3TeS)4 is described together with a NMR-spectroscopic characterization. The structure of the title compound was determined by single crystal X-ray diffraction. Crystals of triphenyltelluroniumsulfide are triclinic (space group P1) with the cell parameters a = 1178.0(3) pm. b = 1295.8(6) pm. c = 1298.7(4) pm, α = 77.67(3)°, β = 82.18(2)°, γ = 66.00(2)° (V = 1766(1) × 106 pm3) and Z = 2. The compound appears to form a step-like structure of two [Ph3TeS]2 units and crystallizes with two molecules of CH2Cl2 per unit cell.


2013 ◽  
Vol 28 (1) ◽  
pp. 13-17 ◽  
Author(s):  
F. Laufek ◽  
A. Vymazalová ◽  
D.A. Chareev ◽  
A.V. Kristavchuk ◽  
J. Drahokoupil ◽  
...  

The (Ag,Pd)22Se6 phase was synthesized from individual elements by silica glass tube technique and structurally characterized from powder X-ray diffraction data. The (Ag,Pd)22Se6 phase crystallizes in Fm$\overline3$m symmetry, unit-cell parameters: a = 12.3169(2) Å, V = 1862.55(5) Å3, Z = 4, and Dc = 10.01 g/cm3. The crystal structure of the (Ag,Pd)22Se6 phase represents a stuffed 3a.3a.3a superstructure of the Pd structure (fcc), where only 4 from 108 available octahedral holes are occupied. Its crystal structure is related to the Cr23C6 structure type.


Author(s):  
Bei Zhang ◽  
Gangxing Guo ◽  
Fang Lu ◽  
Ying Song ◽  
Yong Liu ◽  
...  

Low temperature is a major limiting factor for plant growth and development. Dehydrin proteins are generally induced in response to low-temperature stress. In previous research, a full-length dehydrin gene,PicW2, was isolated fromPicea wilsoniiand its expression was associated with hardiness to cold. In order to gain insight into the mechanism of low-temperature tolerance by studying its three-dimensional crystal structure, prokaryotically expressed PicW2 dehydrin protein was purified using chitosan-affinity chromatography and gel filtration, and crystallized using the vapour-diffusion method. The crystal grew in a condition consisting of 0.1 MHEPES pH 8.0, 25%(w/v) PEG 3350 using 4 mg ml−1protein solution at 289 K. X-ray diffraction data were collected from a crystal at 100 K to 2.82 Å resolution. The crystal belonged to space groupC121, with unit-cell parametersa= 121.55,b= 33.26,c= 73.39 Å, α = γ = 90.00, β = 109.01°. The asymmetric unit contained one molecule of the protein, with a corresponding Matthews coefficient of 2.87 Å3 Da−1and a solvent content of 57.20%. Owing to a lack of structures of homologous dehydrin proteins, molecular-replacement trials failed. Data collection for selenium derivatization of PicW2 and crystal structure determination is currently in progress.


2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 18
Author(s):  
G. E. Delgado ◽  
P. Grima-Gallardo ◽  
J. A. Aitken ◽  
A. Cárdenas ◽  
I. Brito

The Cu2FeIn2Se5 alloy, belonging to the system (CuInSe2)1-x(FeSe)x with x= ⅓, was synthesized by the melt and annealing technique. The differential thermal analysis (DTA) indicates that this compound melts at 1017 K. The crystal structure of this new quaternary compound was established using powder X-ray diffraction. Cation distribution analysis indicates that this material crystallizes in a P-chalcopyrite structure, space group P2c (Nº 112), with unit cell parameters a = 6.1852(2) Å, c = 12.3633(9) Å, V = 472.98(4) Å3. Cu2FeIn2Se5 is a new adamantane type compound derivative of the sphalerite structure, and consists of a three-dimensional arrangement of distorted CuSe4, FeSe4, and InSe4 tetrahedral connected by common faces.


2005 ◽  
Vol 20 (3) ◽  
pp. 207-211 ◽  
Author(s):  
S. N. Achary ◽  
A. K. Tyagi ◽  
S. K. Kulshreshtha ◽  
O. D. Jayakumar ◽  
P. S. R. Krishna ◽  
...  

The low-cristobalite-type modification of Al0.5Ga0.5PO4 is prepared by annealing the amorphous precipitate of stoichiometric phosphate at 1300 °C. The phase purity of the sample is ascertained by powder X-ray diffraction. The crystal structure is refined by Rietveld refinements of the neutron and X-ray diffraction data of the polycrystalline powder. This compound crystallizes in an orthorhombic lattice with unit cell parameters, a=7.0295(8), b=7.0132(8), and c=6.9187(4) Å, V=341.08(6) Å3, Z=4 (Space group C 2221, No. 20). The crystal structure analysis reveals the random distribution of the Al3+ and Ga3+ having tetrahedral coordination with typical M–O (M=Al3+:Ga3+) bond lengths as 1.74 Å. Similarly, the P5+ have tetrahedral coordination with typical P–O bond lengths 1.52–1.54 Å. The Mo4 and PO4 tetraheda are linked by common corners forming a three-dimensional framework lattice. The details of the crystal structure are presented in this paper.


1988 ◽  
Vol 66 (7) ◽  
pp. 1770-1775 ◽  
Author(s):  
David J. Elliot ◽  
Sanna Haukilahti ◽  
David G. Holah ◽  
Alan N. Hughes ◽  
Stanislaw Maciaszek ◽  
...  

Reactions between Co(II), Diphos, and NaBH3CN lead to Co(BH3CN)2(Diphos)2, 1, or [Co(BH3CN)(Diphos)2]X, 2 (X = ClO4 or BPh4), and, in certain solvents, 2 reacts to produce [Co(CN)(Diphos)2](ClO4). Compound 1 can be reversibly converted to Co(BH3CN)2(DMF)4, 4, via Co(BH3CN)2(Diphos)(DMF). In addition, 1 reacts with CO to form the Co(I) and Co(III) compounds [Co(Diphos)2](CO)]X and [Co(Diphos)2(CN)2]X (X = BH3CN or BPh4). Single crystal X-ray diffraction studies of 4 show that the compound crystallizes in the triclinic space group [Formula: see text], with unit cell parameters a = 7.572(6), b = 9.695(6), c = 9.395(6) Å, α = 81.06(4), β = 68.46(5), γ = 68.19(5)°, V = 595.5 Å3, Z = 1, and dcalcd = 1.202 g cm−3. The structure converged to a conventional R factor of 0.040 for 2841 observations and showed an octahedral arrangement of four O atoms from DMF molecules and two trans N-bound BH3CN groups around the Co(II) center.


2019 ◽  
Vol 234 (9) ◽  
pp. 569-579
Author(s):  
Meriem Goudjil ◽  
Enrique Gutiérrez-Puebla ◽  
Paola Bonazzi ◽  
Eugenio Lunedei ◽  
Djillali Mezaoui ◽  
...  

Abstract A series of six new single crystals of fully stoichiometric As3+-bearing Mo-oxides and partially W-substituted Mo-oxides with formula AsmO(Mo1−xWxO3)p (m = 1, 2; p = 5, 7, 9, 10 and 11 and 0 ≤ x ≤ 0.6) was successfully grown using vapor-phase transport in vacuo. The crystal structures were determined using single-crystal X-ray diffraction data. All these compounds exhibit acentric orthorhombic symmetry with Z = 2, and belong to the so-called (n)-ITB (intergrowth tungsten bronzes) family, with n = 2, 3, 4 and 5. The six (n)-ITB phases have the following formulae: (2)-AsMo5O16 (Pm 2a), (2)-As2Mo10O31 (Pma 2), (3)-AsMo7O22 (Pmn 21), (3)-As(Mo5.53W1.47)O22 (Pmn 21), (4)-As(Mo4.33W4.67)O28 (Pm 2a) and (5)-As(W6.63Mo4.37)O34 (Pmn 21). Their structures consist of vertex-sharing MO6 octahedral units (with M either Mo or Mo/W) connected so as to form three-dimensional frameworks. Such frameworks consist of perovskite tungsten bronzes (PTB) type slabs, from 2- to 5-octahedra wide, intergrown with single hexagonal tungsten bronzes (HTB) type slabs, stacked up to form pseudo-hexagonal tunnels along the a-axis. As3+ and additional oxygen atoms are located in off-center positions inside the tunnels, forming As–O bonds with peculiar arrangements. In particular, we obtained the first examples of structures where, besides the usual AsO3E distorted pyramidal geometry, As3+ adopts AsO4E coordination with a seesaw configuration.


2006 ◽  
Vol 21 (3) ◽  
pp. 210-213 ◽  
Author(s):  
Mohamed Chakir ◽  
Abdelaziz El Jazouli ◽  
Jean-Pierre Chaminade

A new Nasicon phosphates series [Na3+xCr2−xCox(PO4)3(0⩽x⩽1)] was synthesized by a coprecipitation method and structurally characterized by powder X-ray diffraction. The selected compound Na3.5Cr1.5Co0.5(PO4)3 (x=0.5) crystallizes in the R3c space group with the following hexagonal unit-cell dimensions: ah=8.7285(3) Å, ch=21.580(2) Å, V=1423.8(1) Å3, and Z=6. This three-dimensional framework is built of PO4 tetrahedra and Cr∕CoO6 octahedra sharing corners. Na atoms occupy totally M(1) sites and partially M(2) sites.


1985 ◽  
Vol 40 (4) ◽  
pp. 562-564 ◽  
Author(s):  
Abdulalah T. Mohammed ◽  
Ulrich Muller

(PPh4)2[Sb2Br8] can be prepared from SbBr3 and PPh4Br in CH2Br2 or from Sb2S3, PPh4Br and HBr in 1,2-dichloroethane. Its crystal structure was de­termined with X-ray diffraction data (2764 observed reflexions, R = 0.039). Crystal data: triclinic, space group P1̄, a = 1024.9. b = 1127.1, c = 1282.4 pm, α = 111.80, β = 94.52, γ = 106.92°, Z = 1. The centrosymmetric [Sb2Br8]2- ions consist of two square pyramids sharing a basal edge. The cations are grouped to (PPh4+)2 pairs similarly as in (PPh4)2[As2Cl8]; although the latter compound has a comparable general crystal packing, it is not isotopic. IR and Raman spectral data are reported.


2018 ◽  
Vol 73 (3-4) ◽  
pp. 197-202
Author(s):  
Shu Kui Shi ◽  
Zhan Guo ◽  
Rui Feng ◽  
Lin Yu Jin ◽  
Yan Bai ◽  
...  

AbstractA bisupporting Keggin-type polyoxometalate compound, {[CuII(phen)2]2[(HBW12O40)]}[CuIICl2(phen)]2· 2H2O (phen=1,10-phenathroline) (1), has been synthesized through the hydrothermal method and characterized by IR spectroscopy, elemental analysis, UV/Vis/NIR spectroscopy, and powder and single crystal X-ray diffraction. The bisupporting Keggin-polyoxometalate consists of one Keggin-type [HBW12O40]4−core and two covalently linked copper(II) complex fragments [Cu(phen)2]2+. In the crystal structure π···π interactions, C–H···Cl, O–H···Cl, O–H···O and C–H···O hydrogen bonds lead to a three-dimensional supramolecular structure.


Sign in / Sign up

Export Citation Format

Share Document