The new P-chalcopyrite compound Cu2FeIn2Se5; synthesis, thermal analysis (DTA), and crystal structure analysis by X-ray powder diffraction (XRPD)

2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 18
Author(s):  
G. E. Delgado ◽  
P. Grima-Gallardo ◽  
J. A. Aitken ◽  
A. Cárdenas ◽  
I. Brito

The Cu2FeIn2Se5 alloy, belonging to the system (CuInSe2)1-x(FeSe)x with x= ⅓, was synthesized by the melt and annealing technique. The differential thermal analysis (DTA) indicates that this compound melts at 1017 K. The crystal structure of this new quaternary compound was established using powder X-ray diffraction. Cation distribution analysis indicates that this material crystallizes in a P-chalcopyrite structure, space group P2c (Nº 112), with unit cell parameters a = 6.1852(2) Å, c = 12.3633(9) Å, V = 472.98(4) Å3. Cu2FeIn2Se5 is a new adamantane type compound derivative of the sphalerite structure, and consists of a three-dimensional arrangement of distorted CuSe4, FeSe4, and InSe4 tetrahedral connected by common faces.

2005 ◽  
Vol 20 (3) ◽  
pp. 207-211 ◽  
Author(s):  
S. N. Achary ◽  
A. K. Tyagi ◽  
S. K. Kulshreshtha ◽  
O. D. Jayakumar ◽  
P. S. R. Krishna ◽  
...  

The low-cristobalite-type modification of Al0.5Ga0.5PO4 is prepared by annealing the amorphous precipitate of stoichiometric phosphate at 1300 °C. The phase purity of the sample is ascertained by powder X-ray diffraction. The crystal structure is refined by Rietveld refinements of the neutron and X-ray diffraction data of the polycrystalline powder. This compound crystallizes in an orthorhombic lattice with unit cell parameters, a=7.0295(8), b=7.0132(8), and c=6.9187(4) Å, V=341.08(6) Å3, Z=4 (Space group C 2221, No. 20). The crystal structure analysis reveals the random distribution of the Al3+ and Ga3+ having tetrahedral coordination with typical M–O (M=Al3+:Ga3+) bond lengths as 1.74 Å. Similarly, the P5+ have tetrahedral coordination with typical P–O bond lengths 1.52–1.54 Å. The Mo4 and PO4 tetraheda are linked by common corners forming a three-dimensional framework lattice. The details of the crystal structure are presented in this paper.


2018 ◽  
Vol 64 (6) ◽  
pp. 548
Author(s):  
Gustavo Marroquin ◽  
Gerzon E. Delgado ◽  
Pedro Grima-Gallardo ◽  
Miguel Quintero

The crystal structure of the quaternary compound CuVInSe3 belonging to the system (CuInSe2)1-x(VSe)x with x= ½, was analyzed using X-ray powder diffraction data. This material was synthesized by the melt and anneal method and crystallizes in the tetragonal space group P2c (Nº 112), with unit cell parameters a = 5.7909(4) Å, c = 11.625(1) Å, V = 389.84(5) Å3. The Rietveld refinement of 25 instrumental and structural variables led to Rexp = 6.6 %, Rp = 8.7 %, Rwp = 8.8 % and S = 1.3 for 4501 step intensities and 153 independent reflections. This compound has a normal adamantane structure and is isostructural with CuFeInSe3. The DTA indicates that this compound melts at 1332 K.


2019 ◽  
Vol 75 (5) ◽  
pp. 504-507 ◽  
Author(s):  
Hui-Ru Chen

Excellent fluorescence properties are exhibited by d 10 metal compounds. The novel three-dimensional ZnII coordination framework, poly[[{μ2-bis[4-(2-methyl-1H-imidazol-1-yl)phenyl] ether-κ2 N 3:N 3′}(μ2-furan-2,5-dicarboxylato-κ2 O 2:O 5)zinc(II)] 1.76-hydrate], {[Zn(C6H2O5)(C20H18N4O)]·1.76H2O} n , has been prepared and characterized using IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. The crystal structure analysis revealed that the compound exhibits a novel fourfold interpenetrating diamond-like network. This polymer also displays a strong fluorescence emission in the solid state at room temperature.


Author(s):  
Bei Zhang ◽  
Gangxing Guo ◽  
Fang Lu ◽  
Ying Song ◽  
Yong Liu ◽  
...  

Low temperature is a major limiting factor for plant growth and development. Dehydrin proteins are generally induced in response to low-temperature stress. In previous research, a full-length dehydrin gene,PicW2, was isolated fromPicea wilsoniiand its expression was associated with hardiness to cold. In order to gain insight into the mechanism of low-temperature tolerance by studying its three-dimensional crystal structure, prokaryotically expressed PicW2 dehydrin protein was purified using chitosan-affinity chromatography and gel filtration, and crystallized using the vapour-diffusion method. The crystal grew in a condition consisting of 0.1 MHEPES pH 8.0, 25%(w/v) PEG 3350 using 4 mg ml−1protein solution at 289 K. X-ray diffraction data were collected from a crystal at 100 K to 2.82 Å resolution. The crystal belonged to space groupC121, with unit-cell parametersa= 121.55,b= 33.26,c= 73.39 Å, α = γ = 90.00, β = 109.01°. The asymmetric unit contained one molecule of the protein, with a corresponding Matthews coefficient of 2.87 Å3 Da−1and a solvent content of 57.20%. Owing to a lack of structures of homologous dehydrin proteins, molecular-replacement trials failed. Data collection for selenium derivatization of PicW2 and crystal structure determination is currently in progress.


2011 ◽  
Vol 26 (4) ◽  
pp. 326-330 ◽  
Author(s):  
Sytle M. Antao

The crystal structures of four samples of anhydrite, CaSO4, were obtained by Rietveld refinements using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and space group Amma. As an example, for one sample of anhydrite from Hants County, Nova Scotia, the unit-cell parameters are a = 7.00032(2), b = 6.99234(1), c = 6.24097(1) Å, and V = 305.487(1) Å3 with a > b. The eight-coordinated Ca atom has an average <Ca-O> distance of 2.4667(4) Å. The tetrahedral SO4 group has two independent S-O distances of 1.484(1) to O1 and 1.478(1) Å to O2 and an average <S-O> distance of 1.4810(5) Å. The three independent O-S-O angles [108.99(8) × 1, 110.38(3) × 4, 106.34(9)° × 1; average <O-S-O> [6] = 109.47(2)°] and S-O distances indicate that the geometry of the SO4 group is quite distorted in anhydrite. The four anhydrite samples have structural trends where the a, b, and c unit-cell parameters increase linearly with increasing unit-cell volume, V, and their average <Ca-O> and <S-O> distances are nearly constant. The grand mean <Ca-O> = 2.4660(2) Å, and grand mean <S-O> = 1.4848(3) Å, the latter is longer than 1.480(1) Å in celestite, SrSO4, as expected.


2021 ◽  
Vol 67 (2 Mar-Apr) ◽  
pp. 305
Author(s):  
G. E. Delgado ◽  
P. Grima-Gallardo ◽  
J. A. Aitken ◽  
H. Cabrera ◽  
J. Cisterna ◽  
...  

The crystal structure of the new CuFeInTe3 quaternary compound was studied by the Rietveld method from powder X-ray diffraction data. The CuFeInTe3 compound crystallize in the tetragonal CuFeInSe3-type structure with space group P2c (Nº 112), and unit cell parameters a = 6.1842(1) Å, c = 12.4163(2) Å, V = 474.85(1) Å3. The density of CuFeInTe3 is rx = 5.753 g cm−3. The reliability factors of the Rietveld refinement results are Rp= 5.5%, Rwp= 6.1%, Rexp= 4.7%, and S= 1.3. The powder XRD data of CuFeInTe3 are presented and the figures of merit of indexation are M20 = 79.4 and F30 = 43.3 (0.0045, 154).


Author(s):  
Samia Mokhtari ◽  
Chahrazed Trifa ◽  
Sofiane Bouacida ◽  
Chaouki Boudaren ◽  
Mohammed S.M. Abdelbaky ◽  
...  

A coordination polymer formulated as [Sr(H2BTEC)(H2O)] n (H4BTEC = benzene-1,2,4,5-tetracarboxylic acid, C10H6O8), was synthesized hydrothermally and characterized by single-crystal and powder X-ray diffraction, scanning electron microscopy and thermal analysis. Its crystal structure is made up of a zigzag inorganic chain formed by edge-sharing of [SrO8] polyhedra running along [001]. Adjacent chains are connected to each other via the carboxylate groups of the ligand, resulting in a double-layered network extending parallel to (100). O—H...O hydrogen bonds of medium-to-weak strength between the layers consolidate the three-dimensional structure. One of the carboxylic OH functions was found to be disordered over two sets of sites with half-occupancy.


1980 ◽  
Vol 35 (11) ◽  
pp. 1366-1372 ◽  
Author(s):  
Reinhild Böhme ◽  
Jörg Rath ◽  
Bernd Grunwald ◽  
Gerhard Thiele

The mixed valence thallium chloride "Tl2Cl3" is polymorphous. Raman spectra and comparable lattice translations suggest similar structures of both modifications. The crystal structure of the rhombic α-Tl2Cl3 crystallizing in yellow, needle-shaped crystals, has been determined from three-dimensional X-ray diffraction data. The unit cell with cell parameters a= 1474.8(5) pm, b - 2508.7(6) pm and c = 1267.6(2) pm contains 16 formula units distributed on 24 independent atom positions. The compound is a mixed valence thallium(I)-hexachlorothallate(III) Tl3[TlCl6] because three of the nine independent Tl atoms are surrounded octahedrally by CI atoms in distances of 250-265 pm, while the other Tl atoms have seven, eight or nine CI neighbours variing between 306 and 383 pm.β-Tl3[TlCl6] forms pale yellow thin platelets and crystallizes monoclinic with cell parameters a = 2549.4(13) pm, 6 = 1469.9(8) pm, c = 1308.5(12) pm and β = 108.58°.


2008 ◽  
Vol 63 (11) ◽  
pp. 1339-1342 ◽  
Author(s):  
Shuxi Zhou ◽  
Yanxiong Ke ◽  
Hongliang Zou ◽  
Tianhua Liu ◽  
Fang Zhu ◽  
...  

Abstract Utilizing unsymmetrical 1,2,4-benzenetricarboxylate (1,2,4-BTC) as a ligand, a complex [Mn2.5(1,2,4-BTC)- (OH)2(H2O)] was synthesized by hydrothermal reaction and characterized by single crystal X-ray diffraction. The coordination polymer crystallizes in the triclinic space group P1̅, with cell parameters a = 5.7702(5), b = 8.0269(6), c = 12.1378(9) Å, α = 88.000(1)°, β = 81.493(1)◦, γ = 88.569(1)°, and Z = 2. In the the crystal, there are Mn- O-Mn sheets which are further connected through the 1,2,4-BTC ligands into a 3D framework, which is rare in the coordination chemistry originating from transition metal ions and unsymmetrical polycarboxylates.


2017 ◽  
Vol 73 (7) ◽  
pp. 503-507 ◽  
Author(s):  
Long Tang ◽  
Juan Zhang ◽  
Xiao-Xia Liu ◽  
Ji-Jiang Wang ◽  
Feng Fu

The reaction of Cu(NO3)2·3H2O with 2,4′-oxybis(benzoic acid) and 4,4′-bipyridine under hydrothermal conditions produced a new mixed-ligand two-dimensional copper(II) coordination polymer, namely poly[[(μ-4,4′-bipyridine-κ2 N,N′)[μ-2,4′-oxybis(benzoato)-κ4 O 2,O 2′:O 4,O 4′]copper(II)] monohydrate], {[Cu(C14H8O5)(C10H8N2)]·H2O} n , which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction. The X-ray diffraction crystal structure analysis reveals that the CuII ions are connected to form a two-dimensional wave-like network through 4,4′-bipyridine and 2,4′-oxybis(benzoate) ligands. The two-dimensional layers are expanded into a three-dimensional supramolecular structure through intermolecular O—H...O and C—H...O hydrogen bonds. Furthermore, magnetic susceptibility measurements indicate that the complex shows weak antiferromagnetic interactions between adjacent CuII ions.


Sign in / Sign up

Export Citation Format

Share Document