Stimulation of Brain Synaptosome - Associated Adenylate Cyclase by Acidic Phospholipids

1984 ◽  
Vol 39 (11-12) ◽  
pp. 1196-1198 ◽  
Author(s):  
Stylianos Tsakiris

Phosphatidylserine (PS), phosphatidylinositol (PIN) or phosphatidylglycerol (PGL) incubated with synaptosomal plasma membranes (SPM) of dog brain, stimulated adenylate cyclase. The enzyme activity showed a dramatic increase at around 1.6 μmol PS/mg protein, while use of higher concentrations led to inhibition of the activity with respect to the maximal percentage of stimulation. Moreover, PS stimulated the dopamine-sensitive adenylate cyclase. Solubilization of SPM by the detergent Lubrol-PX did not affect the enzyme activation induced by dopamine. The solubilization, also, showed that the enzyme activity does not change at any PS, PIN or PGL concentration used. These results indicate that acidic phospholipids do not directly act on adenylate cyclase, but indirectly, affecting the membrane fluidity probably. Such modifications of interactions through lipid-protein(s) of adenylate cyclase may have implications to physiological responses to hormones or/and neurotransm itters in the central nervous system.

1977 ◽  
Vol 164 (1) ◽  
pp. 67-74 ◽  
Author(s):  
P V Sulakhe ◽  
N L Leung ◽  
A T Arbus ◽  
S J Sulakhe ◽  
S H Jan ◽  
...  

1. GTP and GMP-P(NH)P (guanyl-5'-yl imidodiphosphate) were observed to increase the stimulation of neural adenylate cyclase by dopamine (3,4-dihydroxyphenethylamine) and noradrenaline. 2. GMP-P(NH)P had a biphasic effect on the enzyme activity. 3. Preincubation of membranes with GMP-P(NH)P activated the enzyme by a process dependent on time and temperature. Catecholamines increased the speed and the extent of this activation. 4. Membrane fractions contained high- and low-affinity sites for GMP-P(NH)P binding: this binding was due to protein(s) of the membrane preparations. 5. Low-affinity-site binding of GMP-P(NH)P appeared to be related to the stimulatory effect on the adenylate cyclase activity.


1980 ◽  
Vol 188 (2) ◽  
pp. 393-400 ◽  
Author(s):  
S MacNeil ◽  
A Crawford ◽  
H Amirrasooli ◽  
S Johnson ◽  
A Pollock ◽  
...  

1. Homogenates of whole tissues were shown to contain both intracellular and extracellular factors that affected particulate adenylate cyclase activity in vitro. Factors present in the extracellular fluids produced an inhibition of basal, hormone- and fluoride-stimulated enzyme activity but factors present in the cell cytosol increased hormone-stimulated activity with relatively little effect on basal or fluoride-stimulated enzyme activity. 2. The existence of this cytosol factor or factors was investigated using freshly isolated human platelets, freshly isolated rat hepatocytes, and cultured cells derived from rat osteogenic sarcoma, rat calvaria, mouse melanoma, pig aortic endothelium, human articular cartilage chondrocytes and human bronchial carcinoma (BEN) cells. 3. The stimulation of the hormone response by the cytosol factor ranged from 60 to 890% depending on the tissue of origin of the adenylate cyclase. 4. In each case the behaviour of the factor was similar to the action of GTP on that particular adenylate cyclase preparation. 5. No evidence of tissue or species specificity was found, as cytosols stimulated adenylate cyclase from their own and unrelated tissues to the same degree. 6. In the human platelet, the inclusion of the cytosol in the assay of adenylate cyclase increased the rate of enzyme activity in response to stimulation by prostaglandin E1 without affecting the amount of prostaglandin E1 required for half-maximal stimulation or the characteristics of enzyme activation by prostaglandin E.


1984 ◽  
Vol 220 (1) ◽  
pp. 301-307 ◽  
Author(s):  
S Tsakiris ◽  
G Deliconstantinos

Phosphatidylserine (PtdSer) incubated with synaptosomal plasma membranes (SPM) of dog brain is incorporated into SPM in proportion to its concentration in the incubation medium. Low PtdSer concentrations progressively activated the SPM-associated (Na+ + K+)-stimulated ATPase and acetylcholinesterase. Increasing the PtdSer concentration above that which maximally stimulated the enzyme activities effected a progressive inhibition with respect to maximal stimulation. Arrhenius plots of (Na+ + K+ + Mg2+)-dependent ATPase and 5′-nucleotidase revealed a clear break at 23-24 degrees C for both enzymes in SPM untreated with PtdSer (controls), whereas a linear relation was obtained for SPM treated with PtdSer. Changes in the allosteric properties of (Na+ + K+)-stimulated ATPase by fluoride (F-) and/or of 5′-nucleotidase by concanavalin A (i.e. changes of Hill coefficients) indicate that PtdSer increases the membrane fluidity. These results suggest that modifications of lipid-protein interactions in SPM induced by PtdSer may have implications in the physiological processes in the central nervous system.


1979 ◽  
Vol 27 (10) ◽  
pp. 1317-1321 ◽  
Author(s):  
N W Revis ◽  
J P Durham

Previous studies have described a decrease in the activity of adenylate cyclase in the parotid gland of isoproterenol-treated rats. In the present studies, a similar decrease was observed in mice treated with isoproterenol. Studies on the subcellular distribution of adenylate cyclase after isoproterenol stimulation of the parotid gland showed that enzyme activity was increased in the lysosomal fraction and decreased in the cellular membrane fractions. Cytochemical studies on the localization of adenylate cyclase in stimulated gland showed an increase in vesicles which contained enzyme activity and a decrease in activity at the luminal and plasma membranes. It is suggested, based on the present findings and results reported by other investigators, that after isoproterenol stimulation of the parotid gland, adenylate cyclase (along with excess membrane) is degraded by lysosomes. If this suggestion is true, then the observed decrease in adenylate cyclase would have a molecular explanation.


1985 ◽  
Vol 40 (1-2) ◽  
pp. 97-101 ◽  
Author(s):  
Stylianos Tsakiris

Abstract Incubation of synaptosomal plasma membranes (SPM) with liposomes of phosphatidylserine (PS), phosphatidylinositol (PIN) or phosphatidylglycerol (PGL), led to an increase of acetylcholinesterase (AchE) activity at concentrations of 0.1-1 μmol phospholip ids per mg SPM protein. The use of higher concentrations (1-7 μmol/mg protein), however, led to a progressive inhibition of the activity with respect to the maximal percentage of enzyme stimulation. To explain the enzyme stimulation by the acidic phospholipids, AchE was solubilized with the detergent Lubrol-PX and showed no change in the enzyme activity at any PS, PIN or PGL concentration used, indicating that these compounds do not act on the protein molecule directly. Arrhenius plots of AchE activities in untreated SPM (control), exhibited a break point at 23 °C , which was decreased to 16-17 °C in PS-treated SPM. Moreover, the Arrhenius activation energy (Ea) value in PS-treated SPM was increased related to the Ea below the break point in the control. These results indicate that acidic phospholipids do not act on AchE directly, but indirectly, affecting the membrane fluidity probably. Such modifications of interactions between lipid and AchE may control physiological processes in the central nervous system .


1983 ◽  
Vol 61 (7) ◽  
pp. 688-691 ◽  
Author(s):  
J. J. Liepnieks ◽  
P. Stoskopf ◽  
E. A. Carrey ◽  
C. Prosser ◽  
R. M. Epand

Glucagon can form water-soluble complexes with phospholipids. The incorporation of glucagon into these lipoprotein particles reduces the biological activity of the hormone. The effect is observed only at temperatures below the phase transition temperature of the phospholipid and results in a decreased stimulation of the adenylate cyclase of rat liver plasma membranes by the lipoprotein complex as compared with the hormone in free solution. Two- to five-fold higher concentrations of glucagon are required for half-maximal stimulation of adenylate cyclase when the hormone is complexed with dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, or bovine brain sphingomyelin. A possible role of lipoprotein-associated hormones in the development of insulin resistance is discussed.


1985 ◽  
Vol 63 (8) ◽  
pp. 1007-1016 ◽  
Author(s):  
P. V. Sulakhe

Interactions of several divalent cations (Mn2+, Ca2+, Co2+, Sr2+, and Zn2+) with EGTA-inhibitable adenylate cyclase were investigated in washed membranes (particles) isolated from the gray matter of rat cerebral cortex. The EGTA-inhibitable (called sensitive) enzyme activity was assayed in the presence of Triton X-100 since this detergent caused a marked increase (up to 20-fold) in the enzyme activity. The effects of various divalent metals (all added as chloride salt) indicated the presence of two distinct sites called site I and site II. At low concentrations (less than micromolar) Mn2+, Co2+, and Ca2+ increased (up to 10-fold) the enzyme activity to the same extent and appeared to act via binding to site I (high affinity site). The rank order of affinity was Mn2+ ≥ Co2+ > Ca2+. Zn2+ showed the highest affinity and Sr2+ the lowest towards binding to site I; both these metals increased the enzyme activity to lesser extents than Mn2+, Co2+, or Ca2+. GTP was not required for the stimulation of this enzyme by low concentrations of Ca2+. The interaction of Mn2+ with site II (low affinity site) caused further increase in the enzyme activity, whereas Co2+, Ca2+, and Sr2+ were inhibitory at concentrations >10 μM. Isolated fraction contained loosely and tightly associated pools of calmodulin. Myelin basic protein, but not calcineurin, inhibited the EGTA-sensitive adenylate cyclase activity. The EGTA-insensitive enzyme activity was increased by norepinephrine by mechanisms that depended on GTP and was inhibited by Ca2+. The stimulation of the EGTA-insensitive enzyme modulated the Mg2+ requirement such that Mg2+ binding to the low affinity site (site II) apparently occurred with higher affinity. The likely significance of these results is discussed with regard to (i) the presence of two classes of adenylate cyclase in rat cerebral cortex gray matter and (ii) the regulation of their activities by calmodulin-requiring and GTP-requiring mechanisms.


1976 ◽  
Vol 69 (3) ◽  
pp. 401-412 ◽  
Author(s):  
N. H. HUNT ◽  
T. J. MARTIN ◽  
V. P. MICHELANGELI ◽  
J. A. EISMAN

SUMMARY Both guanosine 5′-triphosphate (GTP) and 5′-guanylylimidodiphosphate (Gpp(NH)p) activated adenylate cyclase (EC 4.6.1.1) in chick kidney plasma membranes. Half-maximal stimulation occurred at 3·1 × 10−6 m for both agents. The maximum increases in adenylate cyclase activity produced by GTP and Gpp(NH)p were respectively 130 and 720% over basal activity. At the end of a 12 min incubation period GTP concentration was 85% of that originally added in the presence of an ATP-regenerating system but less than 20% in its absence. GTP and guanosine 5′-diphosphate inhibited the activation of adenylate cyclase by Gpp(NH)p, suggesting that they all acted at a common site. Gpp(NH)p facilitated the stimulation of adenylate cyclase activity by bovine parathyroid hormone (BPTH) and by the synthetic amino terminal fragment BPTH (1–34), decreasing the concentrations required for half-maximal enzyme activation by a factor of approximately eight in both cases. This property was not shared by the native nucleotide GTP. Gpp(NH)p rendered active (at certain concentrations) a synthetic parathyroid hormone peptide fragment, BPTH (2–34), which was incapable of activating adenylate cyclase in the absence of the nucleotide analogue. This suggested that the GTP analogue, in addition to a direct effect upon adenylate cyclase activity, was capable of influencing hormone interaction with the enzyme complex.


Sign in / Sign up

Export Citation Format

Share Document