Epigenetic Effectiveness of Complete Carcinogens: Specific Interactions of Polycyclic Aromatic Hydrocarbons and Aminoazo Dyes with Cholesterol and Apolipoprotein A-I

2005 ◽  
Vol 60 (9-10) ◽  
pp. 799-806 ◽  
Author(s):  
Bodo Contag

Abstract During a co-precipitation of cholesterol (Chol) and slight amounts of polycyclic aromatic hydrocarbons (PAHs) or aminoazo dyes (AZOs) in aqueous albumin solution, complex particles are formed; on their surfaces apolipoproteins with an amphipathic α-helix (e.g. apoA-I) are more or less firmly adsorbed. An efficacy index can be calculated from the strength of the hydrophobic interactions between apoA-I and the [Chol/PAH]- or [Chol/AZO]-complex, and the solubility of the PAH or AZO in an aqueous medium, which correlates to the carcinogenicity of these compounds. A short-term test for PAHs and AZOs is described, in which the efficacy index can be determined in the simplest manner without any great expenditure on equipment. The previous results suggest that the parent compounds of the PAHs and AZOs can be involved in a specific interaction with cholesterol-domains of the plasma membrane of a cell. The changes in membrane fluidity and architecture caused by these specific interactions could modulate the distribution and/or activity of membrane proteins which are critical to the regulation of cellular proliferation.

2008 ◽  
Vol 3 (No. 4) ◽  
pp. 231-240 ◽  
Author(s):  
E. Hiller ◽  
Ľ. Jurkovič ◽  
M. Bartaľ

The knowledge of sorption-desorption processes of polycyclic aromatic hydrocarbons (PAHs) in natural solids is essential to predict the fate, transport, and environmental risks of these pollutants. In this study, the effect was investigated of temperature on the sorption-desorption of three PAHs (naphthalene, phenanthrene, and pyrene) in two natural solids with different organic carbon contents. In all cases, the sorption isotherms obtained could be well described by the linear sorption model. The analysis based on the measured isotherms and the corresponding equilibrium partition coefficients (Kp) revealed that (1) the sorption of PAHs increased with organic carbon content of the solid and PAH hydrophobicity in the order: sediment < soil and naphthalene < phenanthrene < pyrene, respectively, and (2) the extent of PAH sorption decreased with increasing temperature from 4°C to 27°C on average by 27.3, 17.0, and 27.4% for naphthalene, phenanthrene, and pyrene, respectively. The enthalpies of sorption (δHs) calculated by van’t Hoff equation were negative, relatively small, and in the range of weak forces such as van der Waals forces (0–9 kJ/mol), consistent with hydrophobic interactions and partitioning of the PAHs into soil/sediment organic matter. The desorption of naphthalene and phenanthrene showed significant hysteresis, i.e. great fraction of PAHs was resistant to desorption and somewhat increased with temperature.


1987 ◽  
Vol 42 (11) ◽  
pp. 1290-1295 ◽  
Author(s):  
Wiesław M. Wiczk ◽  
Tadeusz Latowski

Fluorescence quenching of aromatic hydrocarbons in a large concentration range of the quencher has been studied in a variety of two-component mixtures of tetrachloromethane with other solvents. In aliphatic solvents the process could be described by the Stern-Volmer equation, whereas in the remaining mixtures the fluorescence quenching curves showed a parabolic behaviour which has been explained in terms of specific interactions between the components of the mixtures.


2019 ◽  
Vol 64 (1) ◽  
pp. 55-67
Author(s):  
Vlad Pӑnescu ◽  
◽  
Mihaela Cӑtӑlina Herghelegiu ◽  
Sorin Pop ◽  
Mircea Anton ◽  
...  

2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


Author(s):  
M. Assad ◽  
V. V. Grushevski ◽  
O. G. Penyazkov ◽  
I. N. Tarasenko

The concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in the gasoline combustion products emitted into the atmosphere by internal combustion engines (ICE) has been measured using the gas chromatography method. The concentrations of PAHs in the exhaust gases sampled behind a catalytic converter has been determined when the ICE operates in five modes: idle mode, high speed mode, load mode, ICE cold start mode (engine warm-up) and transient mode. Using 92 RON, 95 RON and 98 RON gasoline the effect of the octane number of gasoline on the PAHs content in the exhaust gases has been revealed. The concentration of the most carcinogenic component (benzo(α)pyrene) in the exhaust gases behind a catalytic converter significantly exceeds a reference value of benzo(α)pyrene in the atmospheric air established by the WHO and the EU for ICE in the load mode.


Sign in / Sign up

Export Citation Format

Share Document