The Open Biochemistry Journal
Latest Publications


TOTAL DOCUMENTS

157
(FIVE YEARS 21)

H-INDEX

17
(FIVE YEARS 2)

Published By Bentham Science

1874-091x

2021 ◽  
Vol 15 (1) ◽  
pp. 61-68
Author(s):  
Tarek A. El-Desouky ◽  
Hassan B.H. Hussain

Background: Wheat flour is an important food ingredient for humans, which is the basic ingredient of bread and other bakery products. Objective: This study aimed to assess the effect of adding Glucose Oxidase (GOX), and exposure to ozone gas on methyl-1, 4-benzoquinone (MBQ), and ethyl-1, 4-benzoquinone (EBQ) secreted by Tribolium castaneum in flour. Methods: The flour contaminated by MBQ and EBQ was treated with ozone gas at (10, 20, and 40 ppm) with exposure times (15, 30, and 45 min). Similarly, GOX was added to flour at (10, 15, and 20 ppm), leaving the dough for periods between 10 and 45 min after treatments. The MBQ and EBQ determined by HPLC, and the UV-Visible Spectrophotometer and Fourier Transform Infrared Spectroscopy (FTIR) were used to describe the changes that occurred in the main structure of EBQ after ozonation at 40 ppm for 45 min. Results: The results indicated that adding GOX enzyme to the flour at level 20 ppm degrade the MBQ to 13.7, 20.23, and 39.6 after 15, 30, and 45 min from mixing time, respectively. On the other hnad, the EBQ degrades to 13.6, 18.9, and 35.9%. In contrast, the percentages of degradation of MBQ and EBQ increases after ozonation at 40 ppm for 45min were 84.1 and 78.8%, respectively. The results obtained by UV–vis spectroscopy and FTIR reflect that many oxidation products formed as aldehydes, ketones, and carboxylic acids. Conclusion: In general, ozonation was a reliable treatment for the degradation of benzoquinone in flour.


2021 ◽  
Vol 15 (1) ◽  
pp. 53-60
Author(s):  
Neda Sahi ◽  
Akbar Mostajeran ◽  
Mustafa Ghanadian

Background: Catharanthus roseus (L.) G. Don is the main source of alkaloids anticancer drugs. Alkaloids are derived from amino acids and can lead to changes in these valuable compounds. Objective: This experiment evaluated the variation of amino acids under potassium and ascorbic acid treatments. Methods: Different concentrations (1.5, 3.16, 15 and 30 mM) and forms (K2SO4 and KNO3) of potassium (K+) were added to plants via Hoagland’s nutrient solution. Ascorbic acid (AsA) (750 mg L-1) was sprayed on the leaves surfaces on days 68 and 78. Amino acids were extracted from 90-day-old plant leaves, and different amino acids were determined by High-Performance Liquid Chromatography with fluorescence detection. Results: Amino acids increased in K+ deficiency (1.5 mM), but changes in negatively charged amino acids were lower. In contrast, N-rich amino acids showed the biggest change. In excessive K+, branched-chain and aromatic amino acids decreased, while the least amount of the other amino acids was observed in the plants treated with optimum K+. Conclusion: The exterior of AsA and excessive K+ cause branched-chain and aromatic amino acids, aspartic acid and glutamic acid to decrease.


2021 ◽  
Vol 15 (1) ◽  
pp. 38-52
Author(s):  
Codjo Hountondji ◽  
Jacques H. Poupaert ◽  
Blanche Aguida ◽  
Fulbert K. Agbo Saga ◽  
Joël Pothier ◽  
...  

Background: The majority of scientists, physicians, and healthcare professionals were trained with the paradigm: “antibiotics are for bacteria only !”, because they misunderstood the definition of the ribosome targeting antibiotics. In the context of the current worldwide COVID-19 pandemic, it might be useful to recall as precisely as possible the definition of the word antibiotic and provide evidence that some classes of antibiotics could offer excellent means to counteract viral infections via specific mechanisms. Methods: Molecular modeling and docking studies were used, as well as the tRNAox labeling reaction of the ribosomal protein eL42 in situ on human 80S ribosomes to demonstrate that cycloheximide and its thiosemicarbazone analogues bind to the catalytic Lys-53 residue of the human large subunit ribosomal protein eL42. Results: Comparison of the binding sites for Cycloheximide (CHX) and Sparsomycin (SPS) on the evolutionarily conserved E. coli bL12 and S. cerevisiae eL42 by means of molecular modeling and docking studies showed that: (i) SPS binds in proximity to the catalytic Lys-65 residue of the GANK motif of rp bL12 and to the catalytic Lys-55 residue of the GGQTKP motif of rp eL42; (ii) CHX failed to bind to the GANK motif, while the glutarimide moiety of SPS and CHX was found to make contact with Lys-55 of the GGQTKP motif of rp eL42. Conclusion: In this report, we demonstrate that cycloheximide and its thiosemicarbazone analogues are capable of inhibiting the human 80S ribosomes selectively through their binding to the ε-amino group of the side chain of Lys-53. As a consequence, these small-molecule inhibitors of translation are susceptible to exhibit antiviral activities by preventing the human ribosomes of the SARS-CoV-2 infected cells from synthesizing the viral proteins and enzymes.


2021 ◽  
Vol 15 (1) ◽  
pp. 26-37
Author(s):  
Bin Wang ◽  
Michael S. Thompson ◽  
Kevin M. Adkins

Background: Iron-responsive Elements (IREs) are hairpin structures located in the 5’ or 3’ untranslated region of some animal mRNAs. IREs have a highly conserved terminal loop and a UGC/C or C bulge five bases upstream of the terminal loop, which divides the hairpin stem into an upper stem and a lower stem. Objective: The objective of this study was to investigate the base-pair composition of the upper and lower stems of IREs to determine whether they are highly conserved among mRNAs from different genes. Methods: The mRNA sequences of six 5’IREs and five 3’IREs from several animal species were retrieved from the National Center for Biotechnology Information. The folding free energy of each IRE mRNA sequence was predicted using the RNAfold WebServer. Results: We found that the upper and lower stems of IREs are not highly conserved among the mRNAs of different genes. There are no statistically significant differences in the IRE structures or folding free energies between mammalian and non-mammalian species relative to either the ferritin heavy chain 5’IRE or ferroportin 5’IRE. There are no overall significant differences in the folding free energies between UGC/C-containing 5’IREs and C-bulge-containing 5’IREs, or between 5’IREs and 3’IREs. Conclusion: Further studies are needed to investigate whether the variations in IRE stem composition are responsible for fine-tuning the IRE/Iron-Regulatory Protein interactions among different mRNAs to maintain the balance of cellular iron metabolism, and to identify whether evolutionary processes drive the base-pair composition of the upper and lower stems of IREs toward any particular configuration.


2021 ◽  
Vol 15 (1) ◽  
pp. 20-25
Author(s):  
Mohamed Kadry ◽  
Faten M. Zahran ◽  
Tarek M. Emran ◽  
Mohamed M. Omran

Background: Lipid abnormalities increase Coronary Heart Disease (CHD) risk. Our developed indexes 1,2 were reported in scientific Journals. Here, we verified and evaluated the cardiac enzymes-lipid profile ratio's diagnostic value for diagnosing CHD patients. Methods: Lipid profiles and cardiac enzymes were estimated in all chest pain patients. The area under the receiver-operating characteristic curve (AUC) was used to evaluate the markers' diagnostic accuracy. Results: There were varieties of significant differences (P < 0.01- P < 0.0001) of Creatine Kinase MB (CK-MB) - lipid profile ratio and Troponin I-lipid profile ratio within the groups of chest pain patients. For discriminating between Non-Coronary Chest Pain (NCCP) and Stable Angina (SA) groups, the AUCs were the greatest for CK-MB- High-density Lipoprotein (HDL) ratio (0.62) and for Troponin I-HDL (0.62). Moreover, for discriminating between NCCP and Unstable Angina (UA) groups, the AUC was the greatest for CK-MB-HDL ratio (0.97). Also, for discriminating between NCCP and Acute Myocardial Infarction (AMI) groups, the AUC was the greatest for index 2 (0.99). Similarly, for discriminating between SA and UA groups, the AUC was the greatest for CK-MB-HDL ratio (0.90). For discriminating between SA and AMI groups, the AUC was the greatest for index 2 (0.97). Finally, for discriminating between UA and AMI groups, the AUC was the greatest for index 2 (0.78). Conclusion: Independent CK-MB-HDL ratio can be used as a good and simple index for diagnosing CHD in chest pain patients and discriminating between the different groups of these patients


2021 ◽  
Vol 15 (1) ◽  
pp. 1-19
Author(s):  
Codjo Hountondji ◽  
Gilles Besnaïnou ◽  
Eugène Gaudet ◽  
Jacques H. Poupaert

Aims: Rational use of antibiotics against the betacoronavirus SARS-CoV-2 responsible for the COVID-19 pandemic. Objective: Repositioning and repurposing adequate antibiotics to cure the Coronavirus Disease 2019 (COVID-19). Background: It is widely accepted that viral infections such as the SARS-CoV-2 cannot be cured by antibiotics, whereas bacterial infections can. It is because the SARS-CoV-2 virus has no protein synthesis machinery (usually targeted by antibiotics) to produce from its RNA genome, the viral proteins and enzymes essential for its replication and/or for the assembly of viral particles. However, the antibiotics must be capable of inhibiting the ribosomes of the protein synthesis machinery of the SARS-CoV-2-infected human host cells, in order to prevent them from synthesizing new proteins that they do not need, but are needed for the virus to spread. Unfortunately, the only antibiotic capable of selectively inhibiting the human 80S ribosomes, namely cycloheximide, was found to be a poisonous drug for the mammals. Therefore, the only possibility is to search for the antibiotics that are capable of inhibiting both bacterial and eukaryal ribosomes, in order to prevent at the same time the ribosomes of the infected human host cells from synthesizing the proteins and enzymes for the SARS-CoV-2 virus, and those of the eventual opportunistic pathogenic bacteria from developing pneumonia. Methods: First, we have used a molecular modeling study involving the tools of the semi-empirical quantum mechanics PM3 method to study the interaction between the cation Zn++ and all the molecules considered as zinc transporters in this report. By this approach, the niche in which Zn++ is located was determined. Such an interaction serves as a shuttle and allows zinc cation to invade endocellular structures in the SARS-CoV-2-infected human host cells. Second, we have measured the poly (U)-dependent poly (Phe) synthesis activity of human 80S ribosomes in the presence of increasing concentrations of four antibiotics of the class of the macrolides, namely erythromycin, azithromycin, clarithromycin and telithromycin. This experiment led us to determine for each macrolide, the half-inhibitory concentration (IC50) that is the concentration of antibiotic corresponding to 50% inhibition of the activity of the human 80S ribosomes. Finally, we have analyzed previously published data from the group of Nierhaus (Berlin) on the competition between the incoming aminoacyl-tRNA and the antibiotic tetracycline for the binding to the ribosomal A-site on the E. coli 70S or rabbit liver 80S ribosomes. This led to the conclusion by the authors that tetracycline most likely binds to corresponding sites in 70S and 80S ribosomes with comparable affinity. Results: We propose to reposition the macrolides (azithromycin or erythromycin or others) and tetracyclines for the treatment of COVID-19 patients, on account of the following data gathered in this report. First, these antibiotics are already currently successfully used in medicine in humans and animals. Second, the binding sites of these antibiotics at the upper part of the protein exit tunnel (for the macrolides) and the ribosomal A-site (for tetracyclines) are universally conserved features of the ribosomes in all kingdoms of life. So, these classes of antibiotics are expected to bind to all kinds of ribosomes, the 70S as well as the 80S type, with comparable affinity. Therefore, they are capable of preventing at the same time the ribosomes of the infected human host cells from synthesizing the proteins and enzymes for the SARS-CoV-2 virus, and those of the eventual opportunistic pathogenic bacteria from developing pneumonia. Third, the efficacy assessment of these antibiotics in clinical application consisted of comparing their affinity constants of binding to the human ribosomes with their blood concentration. For example, in the case of azithromycin, the amount of antibiotic administered to COVID-19 patients was 100 μg/ml of circulating blood, which is 43 times superior to the half-inhibitory concentration (IC50 or KIa of 2.3 μg/ml), the concentration of azithromycin corresponding to 50% inhibition of the activity of the human 80S ribosomes. Fourth, zinc cations were previously shown to be a strong antiviral agent, while all the macrolides and tetracyclines that we propose for repurposing or repositioning to cure the COVID-19 are shown in the present report to form Zn++-antibiotic complex and behave as efficient zinc transporters into the SARS-CoV-2-infected host cells. Conclusion: The macrolides (azithromycin or erythromycin or others) and tetracyclines selected for repositioning and repurposing to cure COVID-19 are candidates as specific and effective therapeutic drugs available for the coronavirus disease. We propose to combat the current COVID-19 pandemic with azithromycin or erythromycin (or equivalent) alone or in combination with tetracycline (or equivalent) in the presence of Zn++(SO4--). Taking into account the fact that azithromycin had been shown to be effective in treating viral infections such as papillomaviruses in humans and dogs, we conclude that the statement “no antibiotic for viral infections !” is not relevant for all the clinically approved classes of antibiotics, because selective antibiotics such as the universal antibiotics described in the present report are capable of exhibiting antiviral activities through specific interactions with the human 80S ribosomes of infected host cells. As a conclusion, even though the clinical and experimental data presented here do not suggest virucidal activity of azithromycin-zinc or tetracycline-zinc complexes, they do indicate that when administered simultaneously at the onset of first signs of COVID-19, the most common symptoms being fatigue, fever, dry cough, headache, sore throat, muscle pain or shortness of breath, azithromycin (or tetracycline) and zinc cations are capable of inhibiting ribosomal activity of SARS-CoV-2-infected human cells. This results in blocking protein and enzyme synthesis vital for viral RNA replication and for assembly of viral particles. Early treatment allows both reductions of viremia as well as stabilizing symptoms. The major advantage of this therapeutic strategy is avoiding prolonged clinical COVID-19 disease with contingent worsening of illness and subsequent need for intensive care. Prolonged COVID-19 illness is the major downfall of the present pandemic, returning to normal being long, difficult, and sometimes impossible.


2020 ◽  
Vol 14 (1) ◽  
pp. 33-40
Author(s):  
Jacques H. Poupaert ◽  
Blanche Aguida ◽  
Codjo Hountondji

Introduction: On account of the current COVID-19 pandemic, we have explored the importance of azithromycin and zinc in the treatment of the coronavirus disease by studying the interaction between the cation Zn++ and azithromycin with the tools of the semi-empirical quantum mechanics PM3 method. Methods: By this approach, the niche in which Zn++ is located was determined. Zn++ creates a strong clastic binding between an amine and a hydroxyl group located on the amino-hexose side-chain. Such an interaction serves as a shuttle and allows zinc cation to invade endocellular structures. Results: In this triple collaborative association, the role of hydroxychloroquine would be more that of a chaotropic agent at plasmic membranes, which facilitates access to the azithromycin-Zn++ equipage into key internal compartments. Conclusion: Finally, we show that both azithromycin and Zn++ are susceptible to play a direct role against the replication and the assembly of SARS-CoV-2 particles.


2020 ◽  
Vol 14 (1) ◽  
pp. 25-32
Author(s):  
Musbau A. Akanji ◽  
Anne A. Adeyanju ◽  
Damilare Rotimi ◽  
Oluyomi S. Adeyemi

Nitric Oxide (NO) is an essential signaling molecule with diverse physiological functions in humans. The steady-state concentration and site of production of nitric oxide determine its effects in biological systems. The human cells are exposed to both beneficial and harmful effects of NO. These dual effects of NO could depend on its local concentration in the cells. Additionally, the rate of synthesis, translocation, direct interaction with other molecules, and signals contribute to the biochemical and physiological effects of NO. In this review, the biochemical and physiological role of NO, particularly in health and disease as touching on cell signaling, oxidative stress, immunity, as well as cardiovascular protection amongst others, is focused on. Therefore, this review objectively discusses the dual functionality of NO in living cells.


2020 ◽  
Vol 14 (1) ◽  
pp. 19-24
Author(s):  
Othman A. Baothman ◽  
Yonus A. Alshamrani ◽  
Hasan A. Al-Talhi

Background: Antibiotic resistance is becoming a major public health concern worldwide. In marine animals, pollution is associated with the emergence of extended-spectrum β-lactamase (ESBL)-expressing bacteria, resulting in antibiotic resistance. However, the prevalence of these bacteria in wild fish has not been reported. Objective: Accordingly, in this study, we explored the influence of pollution oxidative stress on the incidence of ESBL-expressing Enterobacteriaceae in the gut of wild fish species from the Red Sea coastal region of Jeddah City, Saudi Arabia. Additionally, we evaluated the incidence of varied ESBL genes contributing to the ESBL+ phenotype. Methods: Antibiotic susceptibility tests were performed using cephalosporins and carbapenems against ESBL- and carbapenem-resistant Enterobacteriaceae (CRE)-producing bacteria. Frequent genes contributing to the ESBL+ phenotype were analyzed. Primers targeting ESBLs (e.g., blaCTX, blaSHV, blaTEM, and blaOXA) were used in polymerase chain reaction assays to detect the ESBL+ phenotype. Results: Screening results from the polluted site revealed ESBL-resistant Klebsiella pneumoniae B8 and CRE-resistant Morganella morganii A4. The evolution of the blaCTX-M gene in M. morganii was a consequence of aquatic pollution. The other isolates Acinetobacter pittii and Providencia rettgeri were found in the clean reference site. The isolate M. morganii showed resistance to most mutual antibiotics and expressed some β-lactamase genes. Conclusion: Our findings provide useful data for selecting marine molecular genomic biomarkers caused by aquatic pollution.


2020 ◽  
Vol 14 (1) ◽  
pp. 9-18
Author(s):  
Ahmad Husein Alkaff ◽  
Mutiara Saragih ◽  
Mochammad Arfin Fardiansyah ◽  
Usman Sumo Friend Tambunan

Dengue Fever (DF) has emerged as a significant public health problem of international concern with its high prevalence in the tropic and subtropical regions. Dengue Virus (DENV), which is the cause of DF, consists of four serotypes of antigenically distinct viruses. The immense variation and limited identity similarity at the amino acid level lead to a problematic challenge in the development of an efficacious vaccine. Fortunately, the extensively available immunological data, the advance in antigenic peptide prediction, and the incorporation of molecular docking and dynamics simulation in immunoinformatics have directed the vaccine development towards the rational design of the epitope-based vaccine. Here, we point out the current state of dengue epidemiology and the recent development in vaccine development. Subsequently, we provide a systematic review of our validated method and tools for B- and T-cell epitope prediction as well as the use of molecular docking and dynamics in evaluating epitope affinity and stability in the discovery of a new tetravalent dengue vaccine through computational epitope-based vaccine design.


Sign in / Sign up

Export Citation Format

Share Document