scholarly journals Solid-State NMR to Study Translational Li Ion Dynamics in Solids with Low-Dimensional Diffusion Pathways

2017 ◽  
Vol 231 (7-8) ◽  
Author(s):  
Kai Volgmann ◽  
Viktor Epp ◽  
Julia Langer ◽  
Bernhard Stanje ◽  
Jessica Heine ◽  
...  

AbstractFundamental research on lithium ion dynamics in solids is important to develop functional materials for, e.g. sensors or energy storage systems. In many cases a comprehensive understanding is only possible if experimental data are compared with predictions from diffusion models. Nuclear magnetic resonance (NMR), besides other techniques such as mass tracer or conductivity measurements, is known as a versatile tool to investigate ion dynamics. Among the various time-domain NMR techniques, NMR relaxometry, in particular, serves not only to measure diffusion parameters, such as jump rates and activation energies, it is also useful to collect information on the dimensionality of the underlying diffusion process. The latter is possible if both the temperature and, even more important, the frequency dependence of the diffusion-induced relaxation rates of actually polycrystalline materials is analyzed. Here we present some recent systematic relaxometry case studies using model systems that exhibit spatially restricted Li ion diffusion. Whenever possible we compare our results with data from other techniques as well as current relaxation models developed for 2D and 1D diffusion. As an example, 2D ionic motion has been verified for the hexagonal form of LiBH

2015 ◽  
Vol 229 (9) ◽  
Author(s):  
Elena Witt ◽  
Suliman Nakhal ◽  
C. Vinod Chandran ◽  
Martin Lerch ◽  
Paul Heitjans

AbstractIn this work nuclear magnetic resonance (NMR) and impedance spectroscopy (IS) studies on Li ion dynamics in microcrystalline


2012 ◽  
Vol 42 ◽  
pp. 2-8 ◽  
Author(s):  
A. Kuhn ◽  
M. Kunze ◽  
P. Sreeraj ◽  
H.-D. Wiemhöfer ◽  
V. Thangadurai ◽  
...  

2016 ◽  
Vol 4 (11) ◽  
pp. 4056-4061 ◽  
Author(s):  
Lei Zhang ◽  
Haipeng Guo ◽  
Ranjusha Rajagopalan ◽  
Xianluo Hu ◽  
Yunhui Huang ◽  
...  

Silicon and hematite, both important functional materials with high theoretical capacity, have been intensively investigated separately for application as anode materials in lithium ion batteries (LIBs).


2017 ◽  
Vol 19 (10) ◽  
pp. 7390-7398 ◽  
Author(s):  
M. Brinkkötter ◽  
M. Gouverneur ◽  
P. J. Sebastião ◽  
F. Vaca Chávez ◽  
M. Schönhoff

Investigation of the beneficial effect of PDADMA in comparison to PEO on the local lithium ion dynamics.


2018 ◽  
pp. 104-110
Author(s):  
I. A. Borovoy ◽  
O. V. Danishevskiy ◽  
A. V. Parfenov

The article substantiates the necessity of organizing the control system of modern lithium-ion batteries. Passive and active methods of cell balancing are described. The method of increase of efficiency of modes of accumulation of electric energy by means of the special electronic control device (the intellectual controller) and its further use for power supply of the functional equipment is considered. The structure of the intelligent controller as a part of the autonomous power supply system with the description of its main functional units and purpose is presented. Practical results of application in the intellectual controller of original adaptive control algorithms defining modes of operation of lithium-ion drives depending on various environmental conditions are resulted. The results of the analysis obtained by the results of experimental operation of the battery system, reflecting the qualitative and quantitative advantages of the proposed method.


2021 ◽  
Vol 13 (10) ◽  
pp. 5752
Author(s):  
Reza Sabzehgar ◽  
Diba Zia Amirhosseini ◽  
Saeed D. Manshadi ◽  
Poria Fajri

This work aims to minimize the cost of installing renewable energy resources (photovoltaic systems) as well as energy storage systems (batteries), in addition to the cost of operation over a period of 20 years, which will include the cost of operating the power grid and the charging and discharging of the batteries. To this end, we propose a long-term planning optimization and expansion framework for a smart distribution network. A second order cone programming (SOCP) algorithm is utilized in this work to model the power flow equations. The minimization is computed in accordance to the years (y), seasons (s), days of the week (d), time of the day (t), and different scenarios based on the usage of energy and its production (c). An IEEE 33-bus balanced distribution test bench is utilized to evaluate the performance, effectiveness, and reliability of the proposed optimization and forecasting model. The numerical studies are conducted on two of the highest performing batteries in the current market, i.e., Lithium-ion (Li-ion) and redox flow batteries (RFBs). In addition, the pros and cons of distributed Li-ion batteries are compared with centralized RFBs. The results are presented to showcase the economic profits of utilizing these battery technologies.


2021 ◽  
Vol 86 (3) ◽  
Author(s):  
Jeffery M. Allen ◽  
Justin Chang ◽  
Francois L. E. Usseglio-Viretta ◽  
Peter Graf ◽  
Kandler Smith

AbstractBattery performance is strongly correlated with electrode microstructure. Electrode materials for lithium-ion batteries have complex microstructure geometries that require millions of degrees of freedom to solve the electrochemical system at the microstructure scale. A fast-iterative solver with an appropriate preconditioner is then required to simulate large representative volume in a reasonable time. In this work, a finite element electrochemical model is developed to resolve the concentration and potential within the electrode active materials and the electrolyte domains at the microstructure scale, with an emphasis on numerical stability and scaling performances. The block Gauss-Seidel (BGS) numerical method is implemented because the system of equations within the electrodes is coupled only through the nonlinear Butler–Volmer equation, which governs the electrochemical reaction at the interface between the domains. The best solution strategy found in this work consists of splitting the system into two blocks—one for the concentration and one for the potential field—and then performing block generalized minimal residual preconditioned with algebraic multigrid, using the FEniCS and the Portable, Extensible Toolkit for Scientific Computation libraries. Significant improvements in terms of time to solution (six times faster) and memory usage (halving) are achieved compared with the MUltifrontal Massively Parallel sparse direct Solver. Additionally, BGS experiences decent strong parallel scaling within the electrode domains. Last, the system of equations is modified to specifically address numerical instability induced by electrolyte depletion, which is particularly valuable for simulating fast-charge scenarios relevant for automotive application.


2021 ◽  
Author(s):  
Susan A. Odom

Overcharge protection of Li-ion batteries with a variety of phenothiazine derivatives.


Sign in / Sign up

Export Citation Format

Share Document