NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials

2012 ◽  
Vol 42 ◽  
pp. 2-8 ◽  
Author(s):  
A. Kuhn ◽  
M. Kunze ◽  
P. Sreeraj ◽  
H.-D. Wiemhöfer ◽  
V. Thangadurai ◽  
...  
2017 ◽  
Vol 231 (7-8) ◽  
Author(s):  
Kai Volgmann ◽  
Viktor Epp ◽  
Julia Langer ◽  
Bernhard Stanje ◽  
Jessica Heine ◽  
...  

AbstractFundamental research on lithium ion dynamics in solids is important to develop functional materials for, e.g. sensors or energy storage systems. In many cases a comprehensive understanding is only possible if experimental data are compared with predictions from diffusion models. Nuclear magnetic resonance (NMR), besides other techniques such as mass tracer or conductivity measurements, is known as a versatile tool to investigate ion dynamics. Among the various time-domain NMR techniques, NMR relaxometry, in particular, serves not only to measure diffusion parameters, such as jump rates and activation energies, it is also useful to collect information on the dimensionality of the underlying diffusion process. The latter is possible if both the temperature and, even more important, the frequency dependence of the diffusion-induced relaxation rates of actually polycrystalline materials is analyzed. Here we present some recent systematic relaxometry case studies using model systems that exhibit spatially restricted Li ion diffusion. Whenever possible we compare our results with data from other techniques as well as current relaxation models developed for 2D and 1D diffusion. As an example, 2D ionic motion has been verified for the hexagonal form of LiBH


Author(s):  
Roman Zettl ◽  
Katharina Hogrefe ◽  
Bernhard Gadermaier ◽  
Ilie Hanzu ◽  
Peter Ngene ◽  
...  

Author(s):  
Mauricio R. Bonilla ◽  
Fabián A. García Daza ◽  
Pierre Ranque ◽  
Frederic Aguesse ◽  
Javier Carrasco ◽  
...  

2015 ◽  
Vol 17 (7) ◽  
pp. 4799-4844 ◽  
Author(s):  
Mahesh Datt Bhatt ◽  
Colm O'Dwyer

Advancements and progress in computational and theoretical investigations of Li-ion battery materials and electrolytes are reviewed and assessed.


2014 ◽  
Vol 7 (8) ◽  
pp. 2739-2752 ◽  
Author(s):  
A. Dunst ◽  
V. Epp ◽  
I. Hanzu ◽  
S. A. Freunberger ◽  
M. Wilkening

Conductivity spectroscopy and 7Li spin-locking NMR relaxometry reveal enhanced ion dynamics in nanocrystalline Li2O2 prepared by high-energy ball milling.


2010 ◽  
Vol 16 (S2) ◽  
pp. 214-215
Author(s):  
T Tanigaki ◽  
K Ito ◽  
K Nakamura ◽  
Y Nagakubo ◽  
J Azuma ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


Batteries ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Shofirul Sholikhatun Nisa ◽  
Mintarsih Rahmawati ◽  
Cornelius Satria Yudha ◽  
Hanida Nilasary ◽  
Hartoto Nursukatmo ◽  
...  

Li-ion batteries as a support for future transportation have the advantages of high storage capacity, a long life cycle, and the fact that they are less dangerous than current battery materials. Li-ion battery components, especially the cathode, are the intercalation places for lithium, which plays an important role in battery performance. This study aims to obtain the LiNixMnyCozO2 (NMC) cathode material using a simple flash coprecipitation method. As precipitation agents and pH regulators, oxalic acid and ammonia are widely available and inexpensive. The composition of the NMC mole ratio was varied, with values of 333, 424, 442, 523, 532, 622, and 811. As a comprehensive study of NMC, lithium transition-metal oxide (LMO, LCO, and LNO) is also provided. The crystal structure, functional groups, morphology, elemental composition and material behavior of the particles were all investigated during the heating process. The galvanostatic charge–discharge analysis was tested with cylindrical cells and using mesocarbon microbeads/graphite as the anode. Cells were tested at 2.7–4.25 V at 0.5 C. Based on the analysis results, NMC with a mole ratio of 622 showed the best characteristicd and electrochemical performance. After 100 cycles, the discharged capacity reaches 153.60 mAh/g with 70.9% capacity retention.


Sign in / Sign up

Export Citation Format

Share Document