Characterisation of TCP phases in CMSX-4 single crystal superalloy subjected to high temperature annealing and creep deformation

2016 ◽  
Vol 1 (4) ◽  
pp. 4-9 ◽  
Author(s):  
Beata Dubiel
2017 ◽  
Vol 131 ◽  
pp. 266-276 ◽  
Author(s):  
Beata Dubiel ◽  
Izabela Kalemba-Rec ◽  
Adam Kruk ◽  
Tomasz Moskalewicz ◽  
Paulina Indyka ◽  
...  

2005 ◽  
Vol 475-479 ◽  
pp. 655-660 ◽  
Author(s):  
Q. Feng ◽  
L.J. Rowland ◽  
T.M. Pollock

Three unusual Ru-rich phases have been identified in a multicomponent Ni-base single crystal superalloy, including a L21 Ru2AlTa Heusler phase, a B2 RuAl phase and a hcp Re(Ru)-rich δ phase. These phases have their own preferential precipitation location within the dendritic structure. No conventional topologically-close-packed (TCP) phases have been observed with thermal exposure at 950oC for 1500 hours.


2015 ◽  
Vol 750 ◽  
pp. 139-144 ◽  
Author(s):  
De Long Shu ◽  
Su Gui Tian ◽  
Xin Ding ◽  
Jing Wu ◽  
Qiu Yang Li ◽  
...  

By means of heat treatment and creep property measurement, an investigation has made into the creep behaviors of a containing 4.5% Re nickel-base single crystal superalloy at high temperature. Results show that the elements W, Mo and Re are enriched in the dendrite arm regions, the elements Al, Ta, Cr and Co are enriched in the inter-dendrite region, and the segregation extent of the elements may be obviously reduced by means of heat treatment at high temperature. In the temperature ranges of 1070--1100 °C, the 4.5% Re single crystal nickel-based superallloy displays a better creep resistance and longer creep life. The deformation mechanism of the alloy during steady state creep is dislocations slipping in the γ matrix and climbing over the rafted γ′ phase. In the later stage of creep, the deformation mechanism of alloy is dislocations slipping in the γ matrix, and shearing into the rafted γ′ phase, which may promote the initiation and propagation of the micro-cracks at the interfaces of γ/γ′ phases up to the occurrence of creep fracture.


Sign in / Sign up

Export Citation Format

Share Document