tlp bonding
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 34)

H-INDEX

20
(FIVE YEARS 3)

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1504
Author(s):  
Chengcong Zhang ◽  
Amir Shirzadi

Joining heat conducting alloys, such as copper and its alloys, to heat resistant nickel-based superalloys has vast applications in nuclear power plants (including future fusion reactors) and liquid propellant launch vehicles. On the other hand, fusion welding of most dissimilar alloys tends to be unsuccessful due to incompatibilities in their physical properties and melting points. Therefore, solid-state processes, such as diffusion bonding, explosive welding, and friction welding, are considered and commercially used to join various families of dissimilar materials. However, the solid-state diffusion bonding of copper alloys normally results in a substantial deformation of the alloy under the applied bonding load. Therefore, transient liquid phase (TLP) bonding, which requires minimal bonding pressure, was considered to join copper alloy (C18150) to a nickel-based superalloy (GH4169) in this work. BNi-2 foil was used as an interlayer, and the optimum bonding time (keeping the bonding temperature constant as 1030 °C) was determined based on microstructural examinations by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), tensile testing, and nano-hardness measurements. TLP bonding at 1030 °C for 90 min resulted in isothermal solidification, hence obtained joints free from eutectic phases. All of the tensile-tested samples failed within the copper alloy and away from their joints. The hardness distribution across the bond zone was also studied.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5557
Author(s):  
Adrian Schwenck ◽  
Tobias Grözinger ◽  
Thomas Günther ◽  
Axel Schumacher ◽  
Dietmar Schuhmacher ◽  
...  

Essential quality features of pressure sensors are, among other accuracy-related factors, measurement range, operating temperature, and long-term stability. In this work, these features are optimized for a capacitive pressure sensor with a measurement range of 10 bars. The sensor consists of a metal membrane, which is connected to a PCB and a digital capacitive readout. To optimize the performance, different methods for the joining process are studied. Transient liquid phase bonding (TLP bonding), reactive joining, silver sintering, and electric resistance welding are compared by measurements of the characteristic curves and long-term measurements at maximum pressure. A scanning electron microscope (SEM) with energy-dispersive X-ray spectroscopy (EDX) analysis was used to examine the quality of the joints. The evaluation of the characteristic curves shows the smallest measurement errors for TLP bonding and sintering. For welding and sintering, no statistically significant long-term drift was measured. In terms of equipment costs, reactive joining and sintering are most favorable. With low material costs and short process times, electric resistance welding offers ideal conditions for mass production.


2021 ◽  
Vol 68 ◽  
pp. 1672-1682
Author(s):  
Lei Sun ◽  
Liang Zhang ◽  
Yi Zhang ◽  
Ming-he Chen ◽  
Cong-ping Chen

2021 ◽  
Vol 8 ◽  
Author(s):  
Liang Zhang ◽  
Su-Juan Zhong

In this article, the 3D integration with Ni/Sn/Ni joints was conducted using transient liquid phase (TLP) bonding (250°C, 0.2 N) with different bonding time. After TLP bonding, plane-type Ni3Sn4 intermetallic compound (IMC) was observed, and when the bonding time is 180 min, complete Ni3Sn4 was found. The diffusion coefficient D was determined to be 32.4 μm2/min. Based on the finite element (FE) simulation, the results demonstrated that the shear stress and equivalent creep strain increased obviously with an increase in the IMC thickness; the results calculated show that the IMC thickness impacts the fatigue life of solder joints significantly, and the fatigue life decreases notably with an increase in the Ni3Sn4 thickness.


2021 ◽  
Vol 263 ◽  
pp. 124404
Author(s):  
Mohammad Ammar Mofid ◽  
Alireza Mahdavi Nejad
Keyword(s):  
Al Alloy ◽  
Ti Alloy ◽  

Sign in / Sign up

Export Citation Format

Share Document