Standard Test Method for Total Organic Carbon in Water by Two Stage Wet Chemical Catalyzed Hydroxyl Radical Oxidation with Infra-Red Detection of Resulting Carbon Dioxide

10.1520/d8361 ◽  
2020 ◽  
Author(s):  
2020 ◽  
Vol 42 (12) ◽  
pp. 603-609
Author(s):  
Jeong-Hwan Choi ◽  
Dong-Hun Shin ◽  
Hye-Bin Kim ◽  
Jong-Gook Kim ◽  
Kitae Baek

Objective:This study proposed the simultaneous multi-oxidation of total organic carbon, total nitrogen, and total phosphorous using modified wet chemical oxidation method.Methods:The multi oxidation process was based on the dual radical system with sulfate and hydroxyl radicals. The sodium persulfate (Na2S2O8) and sodium hydroxide (NaOH) were activated at 40℃ and UV irradiation with 254 nm to generate the sulfate radical and hydroxyl radical. The organic matters were oxidized by the dual radicals, and TOC, TN, and TP values were compared with the control group.Results and Discussion:The dual radical system oxidized organic carbon to carbon dioxide effectively, and the TOC values were similar to the value obtained from the high-temperature combustion technique. However, the residual persulfate after oxidation process interfered the absorbance for TN and inhibit the complexation in TP measurement. The residual persulfate was effectively converted to sulfate by longer heating and UV irradiation, and the interferences were more sensitive to reaction temperature than UV irradiation time. As a result, a higher temperature condition was more effective and enhanced the applicability of multi-oxidation.Conclusions:The multi oxidation of TOC, TN, and TP was demonstrated by wet chemical oxidation, and the proposed method is expected to secure the sample and reduce the analytic time. However, the more suitable condition to enhance the accuracy of TOC, TN, and TP in the multi-oxidation system should be studied further.


2019 ◽  
Vol 19 (1) ◽  
pp. 459-471 ◽  
Author(s):  
Mingxi Yang ◽  
Zoë L. Fleming

Abstract. The atmosphere contains a rich variety of reactive organic compounds, including gaseous volatile organic carbon (VOCs), carbonaceous aerosols, and other organic compounds at varying volatility. Here we present a novel and simple approach to measure atmospheric non-methane total organic carbon (TOC) based on catalytic oxidation of organics in bulk air to carbon dioxide. This method shows little sensitivity towards humidity and near 100 % oxidation efficiencies for all VOCs tested. We estimate a best-case hourly precision of 8 ppb C during times of low ambient variability in carbon dioxide, methane, and carbon monoxide (CO). As proof of concept of this approach, we show measurements of TOC+CO during August–September 2016 from a coastal city in the southwest United Kingdom. TOC+CO was substantially elevated during the day on weekdays (occasionally over 2 ppm C) as a result of local anthropogenic activity. On weekends and holidays, with a mean (standard error) of 102 (8) ppb C, TOC+CO was lower and showed much less diurnal variability. TOC+CO was significantly lower when winds were coming off the Atlantic Ocean than when winds were coming off land if we exclude the weekday daytime. By subtracting the estimated CO from TOC+CO, we constrain the mean (uncertainty) TOC in Atlantic-dominated air masses to be around 23 (±≥8) ppb C during this period. A proton-transfer-reaction mass spectrometer (PTR-MS) was deployed at the same time, detecting a large range of organic compounds (oxygenated VOCs, biogenic VOCs, aromatics, dimethyl sulfide). The total speciated VOCs from the PTR-MS, denoted here as Sum(VOC), amounted to a mean (uncertainty) of 12 (±≤3) ppb C in marine air. Possible contributions from a number of known organic compounds present in marine air that were not detected by the PTR-MS are assessed within the context of the TOC budget. Finally, we note that the use of a short, heated sample tube can improve the transmission of organics to the analyzer, while operating our system alternately with and without a particle filter should enable a better separation of semi-volatile and particulate organics from the VOCs within the TOC budget. Future concurrent measurements of TOC, CO, and a more comprehensive range of speciated VOCs would enable a better characterization and understanding of the atmospheric organic carbon budget.


Sign in / Sign up

Export Citation Format

Share Document