Guide for Conducting Wear Tests Using a Rotary Platform Abraser

2021 ◽  
Author(s):  
Keyword(s):  
2014 ◽  
Vol 42 (3) ◽  
pp. 166-184 ◽  
Author(s):  
Frédéric Biesse ◽  
Jérôme Mahé ◽  
Nicolas Lévy

ABSTRACT Tire tread wear is a key issue in the tire development process and for tire customers. In order to measure the wear performance, tire manufacturers usually proceed to wear tests and calculate the tire life from those tests. An important point in this tire life computation is the criteria chosen for defining the tire's end of life. In Europe, there is a legal minimum tread depth set to 1.6 mm applicable to 75% of the tread pattern width. However, outside those 75% (i.e., on the shoulder part), no clear and shared limit is defined. Also, the usual behavior of customers to decide when their tires should be changed is not well known. The goal of this 2012 study was to identify an average worn profile of tires in Europe and the behavior of customers for replacing their tires. For that, 3000 tires worn out by customers have been collected in scrapyards and measured in five European countries. In this article, we will present the tire collecting method, the measurement process, the analysis method, and some general results and statistics on this 3000 tire database. Finally, the method to compute the average end of life profile and the resulting profile is given.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3281
Author(s):  
Chiara Soffritti ◽  
Annalisa Fortini ◽  
Anna Nastruzzi ◽  
Ramona Sola ◽  
Mattia Merlin ◽  
...  

This work evaluates the dry sliding behavior of anodic aluminum oxides (AAO) formed during one traditional hard anodizing treatment (HA) and two golden hard anodizing treatments (named G and GP, respectively) on a EN AW-6060 aluminum alloy. Three different thicknesses of AAO layers were selected: 25, 50, and 100 μm. Prior to wear tests, microstructure and mechanical properties were determined by scanning electron microscopy (VPSEM/EDS), X-ray diffractometry, diffuse reflectance infrared Fourier transform (DRIFT-FTIR) spectroscopy, roughness, microhardness, and scratch tests. Wear tests were carried out by a pin-on-disc tribometer using a steel disc as the counterpart material. The friction coefficient was provided by the equipment. Anodized pins were weighed before and after tests to assess the wear rate. Worn surfaces were analyzed by VPSEM/EDS and DRITF-FTIR. Based on the results, the GP-treated surfaces with a thickness of 50 μm exhibit the lowest friction coefficients and wear rates. In any case, a tribofilm is observed on the wear tracks. During sliding, its detachment leads to delamination of the underlying anodic aluminum oxides and to abrasion of the aluminum substrate. Finally, the best tribological performance of G- and GP-treated surfaces may be related to the existence of a thin Ag-rich film at the coating/aluminum substrate interfaces.


Rheumatology ◽  
1998 ◽  
Vol 37 (2) ◽  
pp. 137-142 ◽  
Author(s):  
B A Hills ◽  
M K Monds

Abstract Bovine articular cartilage and synovial fluid (SF) were co-incubated with one of three enzymes selected to destroy each of the three major contenders for the active ingredient imparting such remarkable load-bearing lubrication to the normal joint. Destroying hyaluronic acid (HA), alias hyaluronan, with hyaluronidase, both frictional and wear tests displayed no significant change in accordance with most previous studies of SF alone. Destroying surface-active phospholipid (SAPL) with phospholipase A2, there was a highly significant dose-dependent compromise of lubrication as recorded on both tests. Trypsin produced a somewhat surprising result in that lubrication of the cartilage actually improved. This result can be interpreted as indicating that lubricin is not the lubricant per se, but, as a water-soluble, macromolecular, proteinaceous carrier for phospholipid, its destruction caused more SAPL to be deposited as the true load-bearing lubricant. These results are discussed in the context that SAPL, lubricin and HA each have specific roles in a comprehensive lubrication system.


Wear ◽  
2002 ◽  
Vol 252 (11-12) ◽  
pp. 1001-1006 ◽  
Author(s):  
S Guicciardi ◽  
C Melandri ◽  
F Lucchini ◽  
G de Portu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document