A Comparative Study of the Effect of Low Temperature on the Fracture Toughness and Cyclic Properties of Two Candidate High-Strength Low-Alloy Steels for Arctic Pipeline Applications

1981 ◽  
Vol 9 (1) ◽  
pp. 28 ◽  
Author(s):  
KC Lieb ◽  
R Horstman ◽  
KA Peters ◽  
RL Meltzer ◽  
M Bruce Vieth ◽  
...  
Alloy Digest ◽  
1983 ◽  
Vol 32 (8) ◽  

Abstract TRI-MARK TM-115 is a gas-shielded flux-cored welding electrode for continuous high deposition are welding. It is designed specifically for semiautomatic and automatic arc welding of high-strength low-alloy steels and quenched-and-tempered steels. This gas-sheilded tubular wire can be used for single and multiple-pass welding. It has outstanding low-temperature impact properties. Its applications including mining equipment, large vehicles and similar items. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-392. Producer or source: Tri-Mark Inc..


Alloy Digest ◽  
1983 ◽  
Vol 32 (4) ◽  

Abstract TRI-MARK TM-811N2 is a flux-cored welding electrode for all position semiautomatic arc welding. It is designed to weld 2-3% nickel steels for applications requiring good toughness at subzero temperatures; in addition, it is used to weld various other high-strength low-alloy steels and various fine-grained steels with low-temperature toughness. Tri-Mark TM-811N2 is used to deposit typically 2.35% nickel steel weld metal with good low-temperature impact properties. It is used for shipbuilding, oil rigs and similar structures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-389. Producer or source: Tri-Mark Inc..


Alloy Digest ◽  
1979 ◽  
Vol 28 (7) ◽  

Abstract UNIFLUX 90 is a continuous flux-cored welding electrode (wire) for welding in carbon dioxide shielding gas in the flat groove and horizontal fillet positions. It was developed to weld high-strength low-alloy steels, but it can be used successfully to weld other low-alloy steels and carbon steels. It is used to deposit typically 2.40% nickel steel weld metal with good low-temperature impact properties. Uniflux 90 is used widely in shipbuilding and other fabricating industries. It provides around 85,000 psi tensile strength and around 25 foot-pounds Charpy V-notch impact at -60 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on low temperature performance and corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-362. Producer or source: Unicore Inc., United Nuclear Corporation.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 430 ◽  
Author(s):  
Helen Kyriakopoulou ◽  
Panagiotis Karmiris-Obratański ◽  
Athanasios Tazedakis ◽  
Nikoalos Daniolos ◽  
Efthymios Dourdounis ◽  
...  

The present research focuses on the investigation of an in situ hydrogen charging effect during Crack Tip Opening Displacement testing (CTOD) on the fracture toughness properties of X65 pipeline steel. This grade of steel belongs to the broader category of High Strength Low Alloy Steels (HSLA), and its microstructure consists of equiaxed ferritic and bainitic grains with a low volume fraction of degenerated pearlite islands. The studied X65 steel specimens were extracted from pipes with 19.15 mm wall thickness. The fracture toughness parameters were determined after imposing the fatigue pre-cracked specimens on air, on a specific electrolytic cell under a slow strain rate bending loading (according to ASTM G147-98, BS7448, and ISO12135 standards). Concerning the results of this study, in the first phase the hydrogen cations’ penetration depth, the diffusion coefficient of molecular and atomic hydrogen, and the surficial density of blisters were determined. Next, the characteristic parameters related to fracture toughness (such as J, KQ, CTODel, CTODpl) were calculated by the aid of the Force-Crack Mouth Open Displacement curves and the relevant analytical equations.


1979 ◽  
Vol 14 (7) ◽  
pp. 1631-1640 ◽  
Author(s):  
S. S. Bhatnagar ◽  
B. K. Guha ◽  
R. K. Sinha

Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Sign in / Sign up

Export Citation Format

Share Document