The Shear Stress-Strain Curve Determination from Torsion Test in the Large Strain Range

1992 ◽  
Vol 20 (6) ◽  
pp. 396 ◽  
Author(s):  
DR Petersen ◽  
HC Wu ◽  
Z Xu ◽  
PT Wang
1997 ◽  
Vol 119 (1) ◽  
pp. 113-115 ◽  
Author(s):  
Han-Chin Wu ◽  
Zhiyou Xu ◽  
Paul T. Wang

This paper discusses a method, based on Nadai’s solution, which can be used to determine the true (Cauchy) shear stress-strain curve of a material by means of torsion test of a solid shaft. The method is shown to be applicable to loading, unloading and cyclic loading. It is also applicable to fixed-end torsion of a solid shaft in the large shear strain range. A modified method has also been derived for the case of free-end torsion of a tubular specimen in the large strain range.


2014 ◽  
Vol 600 ◽  
pp. 82-89 ◽  
Author(s):  
Yasuhiro Yogo ◽  
Masatoshi Sawamura ◽  
Masafumi Hosoya ◽  
Michiaki Kamiyama ◽  
Noritoshi Iwata ◽  
...  

2017 ◽  
Vol 207 ◽  
pp. 161-166 ◽  
Author(s):  
Yasuhiro Yogo ◽  
Masatoshi Sawamura ◽  
Risa Harada ◽  
Kosei Miyata ◽  
Noritoshi Iwata ◽  
...  

Author(s):  
Xiuhan Yang ◽  
Sai Vanapalli

Several of the geotechnical structures constructed with unsaturated soils undergo a large deformation prior to reaching failure conditions (e.g. progressive failure of a soil slope). During this process, the shear stress in soils typically increases initially and then reduces with an increase in the shear strain. The prediction of the stress-strain relationship is critical for reasonable interpretation of the mechanical behavior of those geo-structures that undergo large deformation. This paper introduces a model based on the disturbed state concept (DSC) to predict the variation of shear stress in unsaturated soils during strain-softening process under consolidated drained triaxial compression condition. In this model, the apparent stress-strain relationship is formulated as a weighted average of a hyperbolic hardening response extending the pre-peak state stress-strain curve and a linear response extending the critical state stress-strain curve with an assumed disturbance function as the weight. The prediction procedure is described in detail and the proposed model is validated using several sets of published data on unsaturated soils varying from coarse- to fine-grained soils. Finally, a comprehensive error analysis is undertaken based on an index of agreement approach.


1997 ◽  
Vol 119 (2) ◽  
pp. 81-84 ◽  
Author(s):  
A. Gilat ◽  
K. Krishna

A new configuration for testing thin layers of solder is introduced and employed to study the effects of strain rate and thickness on the mechanical response of eutectic Sn-Pb solder. The solder in the test is loaded under a well defined state of pure shear stress. The stress and deformation in the solder are measured very accurately to produce a reliable stress-strain curve. The results show that both the stress needed for plastic deformation and ductility increase with increasing strain rate.


Sign in / Sign up

Export Citation Format

Share Document