Measurement of a Nearly Friction-Free Stress–Strain Curve of Silicone Rubber up to a Large Strain in Compression Testing

2018 ◽  
Vol 58 (9) ◽  
pp. 1479-1484 ◽  
Author(s):  
Sanghoon Kim ◽  
Minkyu Kim ◽  
Hyunho Shin ◽  
Kyong-Yop Rhee
2014 ◽  
Vol 600 ◽  
pp. 82-89 ◽  
Author(s):  
Yasuhiro Yogo ◽  
Masatoshi Sawamura ◽  
Masafumi Hosoya ◽  
Michiaki Kamiyama ◽  
Noritoshi Iwata ◽  
...  

2017 ◽  
Vol 207 ◽  
pp. 161-166 ◽  
Author(s):  
Yasuhiro Yogo ◽  
Masatoshi Sawamura ◽  
Risa Harada ◽  
Kosei Miyata ◽  
Noritoshi Iwata ◽  
...  

Author(s):  
W. J. Dan ◽  
W. G. Zhang ◽  
S. H. Li ◽  
Z. Q. Lin

A method for determining the strain-stress curve of larger-strain is proposed when plastic instability occurs in standard tension tests. Thin tested steel sheet is subjected to tension loading until fracture occurs. The deformation process is captured with a digital camera. Displacement and strain field of material deformation can be calculated by a mesh-free PIM method. A tensile experiment is simulated to verify that local measuring stress-strain curve by PIM method near the center of the specimen can describe a full stress-strain curve clearly. Numerical simulation results, at different location along the specimen axial, present that different parts of specimen have different deformation distribution in tensile and the center fracture part of tensile specimen is the only region which can experience full strain. The true stress- true strain curves, based on the estimated parameters, are validated in all strain regions by comparison with curves from standard tension tests. The measured curves by PIM method are very stabilization. Compared with several material constitutive equations, The Swift’s equation is very close to experiment curve at plastic deformation.


2020 ◽  
Vol 839 ◽  
pp. 189-195
Author(s):  
Pavel G. Morrev ◽  
Kostya I. Kapyrin ◽  
I.M. Gryadunov ◽  
Sergey Y. Radchenko ◽  
Daniil O. Dorokhov ◽  
...  

Stress-strain curve construction for low-plastic alloys under severe plastic deformation conditions is considered. A material under investigation is cast bronze Cu85-Pb5-Sn5-Zn5. Experiments on upsetting and deep rolling were conducted. Based on these data, the initial hardening modular and the hardening modular at large strain were evaluated. Classic tests on determining an initial segment of stress-strain curve can lead to grate mistakes because shear band sliding can diminishes appreciably both yield stress and hardening modular. A correct methodology for stress-strain curve construction is proposed.


1997 ◽  
Vol 119 (1) ◽  
pp. 113-115 ◽  
Author(s):  
Han-Chin Wu ◽  
Zhiyou Xu ◽  
Paul T. Wang

This paper discusses a method, based on Nadai’s solution, which can be used to determine the true (Cauchy) shear stress-strain curve of a material by means of torsion test of a solid shaft. The method is shown to be applicable to loading, unloading and cyclic loading. It is also applicable to fixed-end torsion of a solid shaft in the large shear strain range. A modified method has also been derived for the case of free-end torsion of a tubular specimen in the large strain range.


SIMULATION ◽  
2021 ◽  
pp. 003754972110315
Author(s):  
B Girinath ◽  
N Siva Shanmugam

The present study deals with the extended version of our previous research work. In this article, for predicting the entire weld bead geometry and engineering stress–strain curve of the cold metal transfer (CMT) weldment, a MATLAB based application window (second version) is developed with certain modifications. In the first version, for predicting the entire weld bead geometry, apart from weld bead characteristics, x and y coordinates (24 from each) of the extracted points are considered. Finally, in the first version, 53 output values (five for weld bead characteristics and 48 for x and y coordinates) are predicted using both multiple regression analysis (MRA) and adaptive neuro fuzzy inference system (ANFIS) technique to get an idea related to the complete weld bead geometry without performing the actual welding process. The obtained weld bead shapes using both the techniques are compared with the experimentally obtained bead shapes. Based on the results obtained from the first version and the knowledge acquired from literature, the complete shape of weld bead obtained using ANFIS is in good agreement with the experimentally obtained weld bead shape. This motivated us to adopt a hybrid technique known as ANFIS (combined artificial neural network and fuzzy features) alone in this paper for predicting the weld bead shape and engineering stress–strain curve of the welded joint. In the present study, an attempt is made to evaluate the accuracy of the prediction when the number of trials is reduced to half and increasing the number of data points from the macrograph to twice. Complete weld bead geometry and the engineering stress–strain curves were predicted against the input welding parameters (welding current and welding speed), fed by the user in the MATLAB application window. Finally, the entire weld bead geometries were predicted by both the first and the second version are compared and validated with the experimentally obtained weld bead shapes. The similar procedure was followed for predicting the engineering stress–strain curve to compare with experimental outcomes.


Sign in / Sign up

Export Citation Format

Share Document