Evaluation on High Temperature Rheological Properties of Nano-Montmorillonite Modified Asphalt Binder

2017 ◽  
Vol 6 (1) ◽  
pp. 20170031
Author(s):  
Zheng Chen ◽  
Pei Wen Hao ◽  
Ruo Nan Liu
2016 ◽  
Vol 78 (7-3) ◽  
Author(s):  
Rosnawati Buhari ◽  
Nur Fareesya Zabidi ◽  
Mohd Ezree Abdullah ◽  
Siti Khatijah Abu Bakar ◽  
Nurul Hidayah Mohd Kamarudin

The objectives of this study were to determine the blending parameters of coconut shell powder (CSP) modified asphalt binder and to evaluate the rheological properties of CSP modified asphalt binder. CSP of 2%, 4%, 6%, 8% and 10% by weight of asphalt have been incorporated into an unaged 80/100 asphalt mix in order to improve its performance. The influence of the additives on the physical and rheological properties was evaluated with penetration test, softening point, storage stability, dynamic shear rheometer test (DSR), and Field Emission Scanning Electron Microscope (FESEM). The aging of asphalt binders was simulated in a laboratory by using Rotational Thin Film Oven (RTFO). The results showed that the addition of CSP into virgin binder was decreasing the penetration value and increasing the softening point temperature compared to the original binder. On the rheological effect, for unaged modified binder, higher CSP resulted higher G*/sin δ especially at lower temperature compared to the unaged control binder. Besides, for the aged modified binder, stiffness was lower than the control aged binder for all temperature.


2017 ◽  
Vol 35 (7) ◽  
pp. 641-646 ◽  
Author(s):  
Fereidoon Moghadas Nejad ◽  
Hossein Nazari ◽  
Koorosh Naderi ◽  
Fariba Karimiyan Khosroshahi ◽  
Mostafa Hatefi Oskuei

2021 ◽  
Vol 13 (18) ◽  
pp. 10271
Author(s):  
Yuchen Guo ◽  
Xuancang Wang ◽  
Guanyu Ji ◽  
Yi Zhang ◽  
Hao Su ◽  
...  

The deteriorating ecological environment and the concept of sustainable development have highlighted the importance of waste reuse. This article investigates the performance changes resulting from the incorporation of shellac into asphalt binders. Seashell powder-modified asphalt was prepared with 5%, 10%, and 15% admixture using the high-speed shear method. The microstructure of the seashell powder was observed by scanning electron microscope test (SEM); the physical-phase analysis of the seashell powder was carried out using an X-ray diffraction (XRD) test; the surface characteristics and pore structure of shellac were analyzed by the specific surface area Brunauer-Emmett-Teller (BET) test; and Fourier infrared spectroscopy (FTIR) qualitatively analyzed the composition and changes of functional groups of seashell powder-modified asphalt. The conventional performance index of seashell powder asphalt was analyzed by penetration, softening point, and ductility (5 °C) tests; the effect of seashell powder on asphalt binder was studied using a dynamic shear rheometer (DSR) and bending beam rheometer (BBR) at high and low temperatures, respectively. The results indicate the following: seashell powder is a coarse, porous, and angular CaCO3 bio-material; seashell powder and the asphalt binder represent a stable physical mixture of modified properties; seashell powder improves the consistency, hardness, and high-temperature performance of the asphalt binder but weakens the low-temperature performance of it; seashell powder enhances the elasticity, recovery performance, and permanent deformation resistance of asphalt binders and improves high-temperature rheological properties; finally, seashell powder has a minimal effect on the crack resistance of asphalt binders at very low temperatures. In summary, the use of waste seashells for recycling as bio-modifiers for asphalt binders is a practical approach.


2020 ◽  
Vol 21 (sup1) ◽  
pp. S140-S154 ◽  
Author(s):  
Siyu Chen ◽  
Dongdong Ge ◽  
Fangyuan Gong ◽  
Zhanping You ◽  
Aboelkasim Diab ◽  
...  

2016 ◽  
Vol 34 (21) ◽  
pp. 1783-1789 ◽  
Author(s):  
Aliasghar Akbari Nasrekani ◽  
Koorosh Naderi ◽  
Mostafa Nakhaei ◽  
Nader Mahmoodinia

Sign in / Sign up

Export Citation Format

Share Document