recycled low density polyethylene
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 29)

H-INDEX

8
(FIVE YEARS 1)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12442
Author(s):  
Kristina Klein ◽  
Sebastian Heß ◽  
Ulrike Schulte-Oehlmann ◽  
Jörg Oehlmann

Weathering of plastics leads to the formation of increasingly smaller particles with the release of chemical compounds. The latter occurs with currently unknown environmental impacts. Leachate-induced effects of weathered microplastics (MPs) are therefore of increasing concern. To investigate the toxicity of the chemical mixtures from such plastics, we exposed the freshwater shrimp Neocaridina palmata to enriched leachates from unweathered and artificially weathered (UV-A/B light) MPs (≤1 mm) from recycled low-density polyethylene (LDPE-R) pellets and from a biodegradable, not fully bio-based starch blend (SB) foil. We analyzed the individual locomotor activity (moved distance and frozen events) on day 1, 3, 7 and 14 of exposure to five leachate concentrations equivalent to 0.40–15.6 g MPs L−1, representing the upper scale of MPs that have been found in the environment. The median moved distance did not change as a function of concentration, except for the unweathered SB treatment on day 14 that indicated hyperactivity with increasing concentrations. Significant impacts were solely detected for few concentrations and exposure days. Generally, no consistent trend was observed across the experiments. We further assessed the baseline toxicity of the samples in the Microtox assay and detected high bioluminescence inhibitions of the bacterium Aliivibrio fischeri. This study demonstrates that neither the recycled nor the biodegradable material are without impacts on test parameters and therefore cannot be seen as safe alternative for conventional plastics regarding the toxicity. However, the observed in vitro toxicity did not result in substantial effects on the behavior of shrimps. Overall, we assume that the two endpoints examined in the atyid shrimp N. palmata were not sensitive to chemicals leaching from plastics or that effects on the in vivo level affect other toxic endpoints which were not considered in this study.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3486
Author(s):  
Mahmoud M. A. Nassar ◽  
Ishaq Sider

The interfacial compatibility of the natural filler and synthetic polymer is the key performance characteristic of biocomposites. The fillers are chemically modified, or coupling agents and compatibilisers are used to ensure optimal filler-polymer compatibility. Hence, we have investigated the effect of compatibilisation strategies of olive pits (OP) flour content (10, 20, 30, and 40%wt.) filled with recycled low-density polyethylene (rLDPE) on the chemical, physical, mechanical, and thermal behaviour of the developed biocomposites. In this study, we aim to investigate the filler-polymer compatibility in biocomposites by employing novel strategies for the functionalisation of OP filler and/or rLDPE matrix. Specifically, four cases are considered: untreated OP filled rLDPE (Case 1), treated OP filled rLDPE (Case 2), treated OP filled functionalised rLDPE (Case 3), and treated and functionalised OP filled functionalised rLDPE (Case 4). In general, the evaluation of the performance of biocomposites facilitated the application of OP industrial waste as an eco-friendly reinforcing agent for rLDPE-based biocomposites. Furthermore, surface treatment and compatibilisation improved the properties of the developed biocomposites over untreated filler or uncoupled biocomposites. Besides that, the compatibilisers used aided in reducing water uptake and improving thermal behaviour, which contributed to the stability of the manufactured biocomposites.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2682
Author(s):  
Ishaq Sider ◽  
Mahmoud M. A. Nassar

The search for renewable alternatives for petroleum products that can be used in industrial applications is increasing. Each year, several tons of bio-derived industrial waste is produced and most of it is burned or placed in landfills. Olive pits (OP) have unique characteristics such as abundance, renewability, and biodegradability, which can be utilized to develop new types of biocomposites. One of the most promising uses of OP is that they can reinforce the mechanical properties of polymeric biocomposites. This study describes the preparation of recycled low-density polyethylene (rLDPE) that is filled with OP flour (10, 20, 30, and 40 wt.%) using a twin-screw extruder. The effects of the chemical treatment of the OP surface (sodium hydroxide (NaOH) and dimethyl sulfoxide (DMSO)) on the bio-filler/polymer compatibility along with the produced composite’s chemical, physical, mechanical, and thermal properties have been explored. Overall, the reinforced composites that were obtained with alkali-treated OP have better biocomposite properties. This indicates an improved compatibility between the bio-filler and matrix. The results are promising in terms of using OP flour in developing green composites.


2021 ◽  
Vol 1973 (1) ◽  
pp. 012237
Author(s):  
Ayat Hameed ◽  
Shakir Al-Busaltan ◽  
Anmar Dulaimi ◽  
Mustafa Amoori Kadhim ◽  
Rand Al-Yasari

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2564
Author(s):  
Meisam Kouhi ◽  
Simona Butan ◽  
Yang Li ◽  
Elias Shakour ◽  
Mihaela Banu

Low-density polyethylene is the most common polymer for manufacturing containers, bottles, tubes, plastic bags, computer components and so on. There is an urgent need to find solutions for its recycling and reintegration in high volume production components such as non-structural auto applications. The reinforcement of recycled low-density polyethylene with natural fibers represents a solution for the re-use of the recycled low-density polyethylene. However, there is a lack of understanding of how the natural fibers influence the behavior of the bare low-density polyethylene, and furthermore, how the interface between the fibers and the matrix can be controlled in composite to obtain the designed toughness, strength, stiffness and damping. In this sense, the study presents an in-depth analysis of the behavior of three coupling agents used in the chemically functionalized bamboo fibers interface for reinforcing low-density polyethylene composites. Through mechanical tests, the mechanical properties are determined and compared and finally, a correlation between the viscous behavior of the resulted composites and the toughening mechanism is proposed. The conclusion of the study enables a flexible design of polymer composite components fabricated of recycled and non-recycled low-density polyethylene and natural fibers.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2436
Author(s):  
Abubakar Sadiq Mohammed ◽  
Martina Meincken

Low-cost wood–plastic composites (WPCs) were developed from invasive trees and recycled low-density polyethylene. The aim was to produce affordable building materials for low-cost social housing in South Africa. Both raw materials are regarded as waste materials, and the subsequent product development adds value to the resources, while simultaneously reducing the waste stream. The production costs were minimised by utilising the entire biomass of Acacia saligna salvaged from clearing operations without any prior processing, and low-grade recycled low-density polyethylene to make WPCs without any additives. Different biomass/plastic ratios, particle sizes, and press settings were evaluated to determine the optimum processing parameters to obtain WPCs with adequate properties. The water absorption, dimensional stability, modulus of rupture, modulus of elasticity, tensile strength, and tensile moduli were improved at longer press times and higher temperatures for all blending ratios. This has been attributed to the crystallisation of the lignocellulose and thermally induced cross-linking in the polyethylene. An increased biomass ratio and particle size were positively correlated with water absorption and thickness swelling and inversely related with MOR, tensile strength, and density due to an incomplete encapsulation of the biomass by the plastic matrix. This study demonstrates the feasibility of utilising low-grade recycled polyethylene and the whole-tree biomass of A. saligna, without the need for pre-processing and the addition of expensive modifiers, to produce WPCs with properties that satisfy the minimum requirements for interior cladding or ceiling material.


Sign in / Sign up

Export Citation Format

Share Document