Development of Automated Model Generation and Analysis of Surface-Cracked Plates in Bending for Interpolated Elastic–Plastic J-Integral Solutions

2020 ◽  
Vol 9 (5) ◽  
pp. 20190202
Author(s):  
Michael W. Renfro ◽  
Phillip A. Allen ◽  
Christopher D. Wilson
Author(s):  
Makoto Udagawa ◽  
Jinya Katsuyama ◽  
Yoshihito Yamaguchi ◽  
Yinsheng Li ◽  
Kunio Onizawa

The J-integral solutions for cracked pipes are important in crack growth calculation and failure evaluation based on the elastic-plastic fracture mechanics. One of the most important crack types in structural integrity assessment for nuclear piping systems is circumferential semi-elliptical surface crack on the inside of the pipes. Although several J-integral solutions have been provided, no solutions were developed at both the deepest and the surface points of circumferential semi-elliptical surface cracks in pipes. In this study, with backgrounds described above, the J-integral solutions of circumferential semi-elliptical surface cracks on the inside of the pipe were developed by numerical finite element analyses. Three dimensional elastic-plastic analyses were performed considering different material properties, pipe sizes, crack dimensions and, especially, combined loading condition of internal pressure and bending moment which is a typical loading condition for nuclear piping systems. The J values at both the deepest and the surface points were extracted from finite element analysis results. Moreover, in order to benefit users in practical applications, a pair of convenient J-integral estimation equations were developed based on the calculated J values at the deepest and the surface points. Finally, the accuracy and applicability of the convenient equations were confirmed by comparing with the provided stress intensity factor solutions in elastic region and with finite element analysis results in elastic-plastic region.


Author(s):  
K. M. Prabhakaran ◽  
S. R. Bhate ◽  
V. Bhasin ◽  
A. K. Ghosh

Piping elbows under bending moment are vulnerable to cracking at crown. The structural integrity assessment requires evaluation of J-integral. The J-integral values for elbows with axial part-through internal crack at crown under in-plane bending moment are limited in open literature. This paper presents the J-integral results of a thick and thin, 90-degree, long radius elbow subjected to in-plane opening bending moment based on number of finite element analyses covering different crack configurations. The non-linear elastic-plastic finite element analyses were performed using WARP3D software. Both geometrical and material nonlinearity were considered in the study. The geometry considered were for Rm/t = 5, and 12 with ratio of crack depth to wall thickness, a/t = 0.15, 0.25, 0.5 and 0.75 and ratio of crack length to crack depth, 2c/a = 6, 8, 10 and 12.


Author(s):  
S. J. Lewis ◽  
C. E. Truman ◽  
D. J. Smith

This article describes an investigation into the ability of a number of different fracture mechanics approaches to predict failure by brittle fracture under general elastic/plastic loading. Data obtained from C(T) specimens of A508 ferritic steel subjected to warm pre-stressing and side punching were chosen as such prior loadings produce considerably non-proportionality in the resulting stress states. In addition, failure data from a number of round notched bar specimens of A508 steel were considered for failure with and without prior loading. Failure prediction, based on calibration to specimens in the as received state, was undertaken using two methods based on the J integral and two based on local approach methodologies.


2019 ◽  
Vol 39 (2) ◽  
pp. 165-173
Author(s):  
Victor Rizov

The elastic-plastic delamination fracture in layered beams was studied theoretically. Two Four Point Bend (FPB) beam configurations (the Double Leg Four Point Bend (DLFPB) and the Single Leg Four Point Bend (SLFPB)) were analyzed. An elastic-plastic constitutive model with power law hardening was used in the analysis. Fracture behavior was studied by applying the J-integral approach. The analytical solutions of the J-integral were obtained at characteristic levels of the external load. The solutions obtained were verified by analyzing the strain energy release rate with taking into account the material non-linearity. The variation of J-integral value in a function of crack location along the beam dept was investigated. The effect of material non-linearity on the fracture was evaluated. The analysis revealed that the J-integral value decreased with increasing the lower crack arm thickness. It was also found that the material non-linearity has to be taken into account in fracture mechanics based safety design of structural members and components made of layered materials. The analytical solutions obtained are very useful for non-linear investigations, since the simple formulae derived capture the essentials of non-linear fracture in the layered beams under consideration.


Author(s):  
Kiminobu Hojo ◽  
Daigo Watanabe ◽  
Shinichi Kawabata ◽  
Yasufumi Ametani

A lot of applications of elastic plastic FE analysis to flawed structural fracture behaviors of mode I have been investigated. On the other hand the analysis method has not been established for the case of the excessive cyclic torsion loading with mode II or III fracture. The authors tried simulating the fracture behavior of a cylinder-shaped specimen with a through-walled circumferential flaw subjected to excessive monotonic or cyclic loading by using elastic plastic FE analysis. Chaboche constitutive equation of the used FE code Abaqus was applied to estimate the elastic plastic cyclic behavior. As a result in the case of monotonic loading without crack extension, the relation of torque-rotation angle of the experiment was estimated well by the simulation. Also J-integral by the Abaqus’ function agreed with a simplified J-equation using the calculated torque-rotation angle relation. On the other hand under load controlled cyclic loading associated with ductile crack growth, the calculated torque-rotation angle relation did not agree with the experimental one because of high sensitivity of the used stress-strain curve. J-integral from Abaqus code did not increase regardless of the accumulated crack growth and plastic zone. Several simplified ΔJ calculations tried to explain the experimental ductile crack growth and it seemed that da/dN-ΔJ relation follows the Paris’ law. From these examinations an estimation procedure of the structures under excessive cyclic loading was proposed.


Sign in / Sign up

Export Citation Format

Share Document