Bench Test Determinations of Wear Modes to Classify Morphological Attributes of Wear Debris

Author(s):  
BJ Roylance ◽  
TP Sperring ◽  
TG Barraclough
Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3574 ◽  
Author(s):  
Huijie Mao ◽  
Hongfu Zuo ◽  
Han Wang

The oil-line electrostatic sensor (OLES) is a new online monitoring technology for wear debris based on the principle of electrostatic induction that has achieved good measurement results under laboratory conditions. However, for practical applications, the utility of the sensor is still unclear. The aim of this work was to investigate in detail the application potential of the electrostatic sensor for wind turbine gearboxes. Firstly, a wear debris recognition method based on the electrostatic sensor with two-probes is proposed. Further, with the wind turbine gearbox bench test, the performance of the electrostatic sensor and the effectiveness of the debris recognition method are comprehensively evaluated. The test demonstrates that the electrostatic sensor is capable of monitoring the debris and indicating the abnormality of the gearbox effectively using the proposed method. Moreover, the test also reveals that the background signal of the electrostatic sensor is related to the oil temperature and oil flow rate, but has no relationship to the working conditions of the gearbox. This research brings the electrostatic sensor closer to practical applications.


Author(s):  
Christophe Nich ◽  
Yuya Takakubo ◽  
Jukka Pajarinen ◽  
Jiri Gallo ◽  
Yrjo T. Konttinen ◽  
...  

2021 ◽  
Vol 45 (3) ◽  
pp. 197-206
Author(s):  
Giovanni Alfonso Chiariello ◽  
Saimir Kuci ◽  
Guglielmo Saitto ◽  
Massimo Massetti ◽  
Ottavio Alfieri ◽  
...  

Author(s):  
Deise Santana Maia ◽  
Minh-Tan Pham ◽  
Erchan Aptoula ◽  
Florent Guiotte ◽  
Sebastien Lefevre

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3048
Author(s):  
Rok Podlipec ◽  
Esther Punzón-Quijorna ◽  
Luka Pirker ◽  
Mitja Kelemen ◽  
Primož Vavpetič ◽  
...  

The metallic-associated adverse local tissue reactions (ALTR) and events accompanying worn-broken implant materials are still poorly understood on the subcellular and molecular level. Current immunohistochemical techniques lack spatial resolution and chemical sensitivity to investigate causal relations between material and biological response on submicron and even nanoscale. In our study, new insights of titanium alloy debris-tissue interaction were revealed by the implementation of label-free high-resolution correlative microscopy approaches. We have successfully characterized its chemical and biological impact on the periprosthetic tissue obtained at revision surgery of a fractured titanium-alloy modular neck of a patient with hip osteoarthritis. We applied a combination of photon, electron and ion beam micro-spectroscopy techniques, including hybrid optical fluorescence and reflectance micro-spectroscopy, scanning electron microscopy (SEM), Energy-dispersive X-ray Spectroscopy (EDS), helium ion microscopy (HIM) and micro-particle-induced X-ray emission (micro-PIXE). Micron-sized wear debris were found as the main cause of the tissue oxidative stress exhibited through lipopigments accumulation in the nearby lysosome. This may explain the indications of chronic inflammation from prior histologic examination. Furthermore, insights on extensive fretting and corrosion of the debris on nm scale and a quantitative measure of significant Al and V release into the tissue together with hydroxyapatite-like layer formation particularly bound to the regions with the highest Al content were revealed. The functional and structural information obtained at molecular and subcellular level contributes to a better understanding of the macroscopic inflammatory processes observed in the tissue level. The established label-free correlative microscopy approach can efficiently be adopted to study any other clinical cases related to ALTR.


2021 ◽  
Author(s):  
Herman Ching ◽  
Todd J Thorson ◽  
Brian Paul ◽  
Ali Mohraz

The discovery of bicontinuous interfacially jammed emulsion gels (bijels) in 2007 motivated the development of processing techniques to harness their unique morphological attributes in applications such as electrochemical energy storage...


2021 ◽  
Vol 21 (9) ◽  
pp. 11131-11139
Author(s):  
Sen Wu ◽  
Zhijian Liu ◽  
Kezhen Yu ◽  
Zixiao Fan ◽  
Ziyi Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document