Advances in Hysteresis Loop Analysis and Interpretation by Low-Cycle Fatigue Test Computerization

Author(s):  
G Degallaix ◽  
P Hottebart ◽  
A Seddouki ◽  
S Degallaix
2018 ◽  
Vol 22 (3) ◽  
pp. 581-596
Author(s):  
Zhao Fang ◽  
Aiqun Li ◽  
Sheng Shen ◽  
Wanrun Li

Axial low-cycle fatigue tests are conducted on transverse butt joint specimens and cruciform joint specimens made of carbon structural steel GB Q235B. The effect of slip between the specimens and the grips of the test machine is considered by the proposal of a linear slip model. The cyclic softening properties are studied by observing the variation of stress amplitude with cycles. The cyclic stress–strain curve and the strain–life curve for both kinds of specimens are obtained based on the fatigue test data, and the corresponding coefficients are fitted. In order to verify the fatigue test results, finite element models of specimens are established and the corresponding fatigue life assessment is conducted using the local stress–strain approach and the equivalent structural stress approach, respectively. The results show that the effect of slip is unneglectable and the established linear slip model is reasonable. The two kinds of specimens both show a strain softening property, but cruciform joint specimens experience sudden falls of stress amplitude during the test due to the damage of welded lines; cruciform joint specimens show an either one-side failure mode or two-side failure mode while butt joint specimens only show a one-side failure mode; the two-side failure mode tends to lead to shorter fatigue life, so in the design of cruciform joint, such failure mode should be avoided.


2019 ◽  
Vol 29 (2) ◽  
pp. 226-245 ◽  
Author(s):  
Tadashi Masuoka ◽  
Jörg R Riccius

The inner liner of a combustion chamber of a cryogenic liquid rocket engine is exposed to a high load induced by the high temperature of the hot gas and the low temperature of the coolant. The high load causes some inelastic strain that accumulates with each operational cycle until the fracture or rupture of the inner liner. A model that can reproduce the propagation of damage under a thermally cycled load is essential for precisely predicting the chamber life. However, the damage propagation phenomenon or the quantitative value of the damage was so far not fully discussed using the damage data obtained from basic testing of a rocket chamber material. The purpose of the present study was to investigate a precise prediction model based on damage mechanics for simulating the damage propagation of a rocket chamber material. In this study, low cycle fatigue test data at a high temperature (900 K) were analyzed, and damage models that could reproduce the damage propagation under cyclic load conditions were investigated. Then the parameters were identified to reproduce uniaxial test data. These damage models were also subject to a finite element method analysis of a thermomechanical fatigue panel test in order to quantitatively evaluate the deformation, damage propagation, and life of a chamber wall. The analysis of low cycle fatigue test data at 900 K suggested a specific model that could precisely reproduce the damage propagation phenomenon and the basic material test data. From the results, it was confirmed that the model could predict the location of crack initiation.


2016 ◽  
Vol 2016 (0) ◽  
pp. PS-11
Author(s):  
Hisaki SHIRAFUJI ◽  
Masahiro KUSAKA ◽  
Masaaki KIMURA ◽  
Koichi KAIZU

1979 ◽  
Vol 7 (5) ◽  
pp. 297 ◽  
Author(s):  
RT Horstman ◽  
KC Lieb ◽  
B Power ◽  
RL Meltzer ◽  
MB Vieth ◽  
...  

2010 ◽  
Vol 2010 (0) ◽  
pp. 744-745
Author(s):  
Makoto OHTA ◽  
Yoshihiro MIZUTANI ◽  
Akira TODOROKI ◽  
Ryosuke MATSUZAKI

Sign in / Sign up

Export Citation Format

Share Document