Mode I and Mode II Delamination Growth of Interlayer Toughened Carbon/Epoxy (T800H/3900-2) Composite System

Author(s):  
K Kageyama ◽  
I Kimpara ◽  
I Ohsawa ◽  
M Hojo ◽  
S Kabashima
1994 ◽  
Vol 28 (8) ◽  
pp. 732-781 ◽  
Author(s):  
Christian Dahlen ◽  
George S. Springer

A semi-empirical model was developed for estimating the growth of delaminations inside fiber reinforced organic matrix composites subjected to cyclic loads. At any point on the circumference of the delamination mode I, mode II or mixed mode conditions may exist. The form of the proposed delamination growth model follows Elber's expression for the growth of a mode I crack in an aluminum sheet. By employing dimensional analysis, the parameters were established which are to be included in the model. The expression obtained depends on the material properties (transverse tensile ply strength, transverse tensile ply modulus, longitudinal ply shear strength, critical energy release rates) and on the energy release rate at the location under consideration. Tests were conducted with Fiberite T300/976 and IM7/977-2 graphite epoxy composites under mode I, mode II and mixed mode conditions using double cantilever beam, end notched cantilever beam, and mixed mode bending test coupons subjected to both static and cyclic loads. From these tests, first, the constants needed in the model were determined. Second, data were generated and compared to predictions of the model, and good agreement was found between the measured and predicted delamination growths. Results of the present model were also compared to data reported previously, and the model predictions agreed well with these previous data.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 492
Author(s):  
Zhen Pei Chow ◽  
Zaini Ahmad ◽  
King Jye Wong ◽  
Seyed Saeid Rahimian Koloor ◽  
Michal Petrů

This paper aims to propose a temperature-dependent cohesive model to predict the delamination of dissimilar metal–composite material hybrid under Mode-I and Mode-II delamination. Commercial nonlinear finite element (FE) code LS-DYNA was used to simulate the material and cohesive model of hybrid aluminium–glass fibre-reinforced polymer (GFRP) laminate. For an accurate representation of the Mode-I and Mode-II delamination between aluminium and GFRP laminates, cohesive zone modelling with bilinear traction separation law was implemented. Cohesive zone properties at different temperatures were obtained by applying trends of experimental results from double cantilever beam and end notched flexural tests. Results from experimental tests were compared with simulation results at 30, 70 and 110 °C to verify the validity of the model. Mode-I and Mode-II FE models compared to experimental tests show a good correlation of 5.73% and 7.26% discrepancy, respectively. Crack front stress distribution at 30 °C is characterised by a smooth gradual decrease in Mode-I stress from the centre to the edge of the specimen. At 70 °C, the entire crack front reaches the maximum Mode-I stress with the exception of much lower stress build-up at the specimen’s edge. On the other hand, the Mode-II stress increases progressively from the centre to the edge at 30 °C. At 70 °C, uniform low stress is built up along the crack front with the exception of significantly higher stress concentrated only at the free edge. At 110 °C, the stress distribution for both modes transforms back to the similar profile, as observed in the 30 °C case.


2021 ◽  
Author(s):  
Francisco Maciel Monticeli ◽  
Midori Yoshikawa Pitanga ◽  
Maria Odila Hilário Cioffi ◽  
Herman Jacobus Cornelis Voorwald
Keyword(s):  
Mode I ◽  

Sign in / Sign up

Export Citation Format

Share Document