scholarly journals Thermal Delamination Modelling and Evaluation of Aluminium–Glass Fibre-Reinforced Polymer Hybrid

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 492
Author(s):  
Zhen Pei Chow ◽  
Zaini Ahmad ◽  
King Jye Wong ◽  
Seyed Saeid Rahimian Koloor ◽  
Michal Petrů

This paper aims to propose a temperature-dependent cohesive model to predict the delamination of dissimilar metal–composite material hybrid under Mode-I and Mode-II delamination. Commercial nonlinear finite element (FE) code LS-DYNA was used to simulate the material and cohesive model of hybrid aluminium–glass fibre-reinforced polymer (GFRP) laminate. For an accurate representation of the Mode-I and Mode-II delamination between aluminium and GFRP laminates, cohesive zone modelling with bilinear traction separation law was implemented. Cohesive zone properties at different temperatures were obtained by applying trends of experimental results from double cantilever beam and end notched flexural tests. Results from experimental tests were compared with simulation results at 30, 70 and 110 °C to verify the validity of the model. Mode-I and Mode-II FE models compared to experimental tests show a good correlation of 5.73% and 7.26% discrepancy, respectively. Crack front stress distribution at 30 °C is characterised by a smooth gradual decrease in Mode-I stress from the centre to the edge of the specimen. At 70 °C, the entire crack front reaches the maximum Mode-I stress with the exception of much lower stress build-up at the specimen’s edge. On the other hand, the Mode-II stress increases progressively from the centre to the edge at 30 °C. At 70 °C, uniform low stress is built up along the crack front with the exception of significantly higher stress concentrated only at the free edge. At 110 °C, the stress distribution for both modes transforms back to the similar profile, as observed in the 30 °C case.

2017 ◽  
Vol 52 (13) ◽  
pp. 1747-1764 ◽  
Author(s):  
Hassan Abdolpour ◽  
Julio Garzón-Roca ◽  
Gonçalo Escusa ◽  
José M Sena-Cruz ◽  
Joaquim AO Barros ◽  
...  

The present paper explores a new modular floor prototype to be used in emergency houses. The prototype is composed of a frame structure made of glass-fibre-reinforced polymer tubular pultruded profiles, a slab made of sandwich panels with a polyurethane foam core and glass-fibre-reinforced polymer skins, and a tailored connection system that provides integrity between assembled components. A series of experimental tests are carried out including flexural tests on a single panel, on two and three connected panels, and on the assembled floor prototype. The behaviour of the panels is analysed when they are not considered part of the glass-fibre-reinforced polymer framed structure, namely the failure mechanisms and the efficiency of the proposed connection system between the panels. The performance of the floor prototype to support typical load conditions of residential houses is also assessed. Additionally, an analytical model was used to deeper study the behaviour of the developed sandwich panels, connection system and the modular floor prototype.


2018 ◽  
Vol 45 (4) ◽  
pp. 263-278 ◽  
Author(s):  
Michael Rostami ◽  
Khaled Sennah ◽  
Hamdy M. Afefy

This paper presents an experimental program to justify the barrier design at the barrier–deck junction when compared to the factored applied transverse vehicular loading specified in the Canadian Highway Bridge Design Code (CHBDC). Compared to the dimensioning and the glass fibre reinforced polymer (GFRP) bar detailing of a recently crash-tested GFRP-reinforced barrier, the adopted barrier configurations in this paper were similar to those specified by Ministry of Transportation of Québec (MTQ) for TL-5 barrier except that the base of the barrier was 40 mm narrower and the deck slab is of 200 mm thickness, leading to reduction in the GFRP embedment depth into the deck slab. Four full-scale TL-5 barrier specimens were tested to collapse. Correlation between the experimental findings and the factored applied moments from CHBDC equivalent vehicle impact forces resulting from the finite-element modelling of the barrier–deck system was conducted followed by recommendations for use of the proposed design in highway bridges in Québec.


2014 ◽  
Vol 564 ◽  
pp. 428-433 ◽  
Author(s):  
S.N.A. Safri ◽  
Mohamed Thariq Hameed Sultan ◽  
N. Razali ◽  
Shahnor Basri ◽  
Noorfaizal Yidris ◽  
...  

The purpose of this work is to study the best number of layer with the higher impact energy using Glass Fibre Reinforced Polymer (GFRP). The number of layers used in this study was 25, 33, 41, and 49. The impact test was performed using Single Stage Gas Gun (SSGG) for each layers given above with different bullets such as blunt, hemispherical and conical bullets. The gas gun pressure was set to 5, 10, 15 and 20 bar. All of the signals captured from the impact test were recorded using a ballistic data acquisition system. The correlation between the impact energy in terms of number of layer and type of bullet from this test are presented and discussed. It can be summarise that as the number of layer increases, impact energy also increases. In addition, from the results, it was observed that by using different types of bullets (blunt, hemispherical, conical), there is only a slight difference in values of energy absorbed by the specimen.


2014 ◽  
Vol 970 ◽  
pp. 317-319 ◽  
Author(s):  
Syed Mohd Saiful Azwan ◽  
Yahya Mohd Yazid ◽  
Ayob Amran ◽  
Behzad Abdi

Fibre reinforced polymer (FRP) plates subject to quasi-static indentation loading were studied. The plates were fabricated from three layers of chopped strand mat glass fibre and polyester resin using vacuum infusion process. Indentation tests were conducted on the plates with loading rates of 1 mm/min, 10 mm/min, 100 mm/min and 500 mm/min using a hemispherical tip indenter with diameter 12.5 mm. The plates were clamped in a square fixture with an unsupported space of 100 mm × 100 mm. The loads and deflections at the indented location were measured to give energy absorption-deflection curves. The results showed that the loading rate has a large effect on the indentation behaviour and energy absorbed.


Sign in / Sign up

Export Citation Format

Share Document