Prediction of the Distribution of Indoor Air Quality and Comfort in Aircraft Cabins Using Computational Fluid Dynamics (CFD)

2008 ◽  
pp. 117-117-18 ◽  
Author(s):  
AJ Baker ◽  
MB Taylor ◽  
NS Winowich ◽  
MR Heller
Author(s):  
Ayman A. Shaaban ◽  
Samy M. Morcos ◽  
Essam Eldin Khalil ◽  
Mahmoud A. Fouad

Indoor air quality inside chemical laboratories subjected to gaseous contaminants was investigated numerically throughout the current research using Ansys Fluent 13. The lab is 4.8 m (L) * 4.3 m (W) * 2.73 m (H). The model was built and mesh was generated using Gambit 2.2.30 yielding around 1.4 million cells. To ensure the reliability of the Computational Fluid Dynamics (CFD) model validation was done against experimental data of three cases done by Jin et al. [1]. The model could simulate accurately contaminant mole fraction to the order of 10 Indoor air quality inside chemical laboratories subjected to gaseous contaminants was investigated numerically throughout the current research using Ansys Fluent 13. The lab is 4.8 m (L) * 4.3 m (W) * 2.73 m (H). The model was built and mesh was generated using Gambit 2.2.30 yielding around 1.4 million cells. To ensure the reliability of the Computational Fluid Dynamics (CFD) model validation was done against experimental data of three cases done by Jin et al. [1]. The model could simulate accurately contaminant mole fraction to the order of 10.


2016 ◽  
Vol 27 (4) ◽  
pp. 486-498 ◽  
Author(s):  
Alicia Murga ◽  
Sung-Jun Yoo ◽  
Kazuhide Ito

Indoor air quality plays a significant role in human health, especially for those who spend the majority of their time indoors, as is the case of workers in the industrial field. The control of contaminants inside the occupational indoor environment becomes critically important for promoting health. In terms of Health Impact Assessment, indoor air quality inside a factory becomes an essential factor of industrial hygiene. Here, computational fluid dynamics-based indoor environmental design was applied to potentially evaluate the environmental quality in a factory and to improve industrial hygiene. In particular, this study proposes an integrated simulation procedure to predict the inhalation exposure concentration of a hazardous chemical compound (here, cyclohexanone) by using a multi-stage, one-way nesting method. This procedure connects a factory building space, a micro-climate around the human body, and a respiratory tract in the human body. This research provides quantitative and qualitative detailed information of contaminant dosing in workers. The exact inhalation dose of contaminants in the human airways can be estimated based on factory-environment conditions through this procedure. Subsequently, the average contaminant concentration in the work place and inside the human body can be calculated.


2013 ◽  
Vol 368-370 ◽  
pp. 599-602 ◽  
Author(s):  
Ian Hung ◽  
Hsien Te Lin ◽  
Yu Chung Wang

This study focuses on the performance of air conditioning design at the Dazhi Cultural Center and uses a computational fluid dynamics (CFD) simulation to discuss the differences in wind velocity and ambient indoor temperature between all-zone air conditioning design and stratified air conditioning design. The results have strong implications for air conditioning design and can improve the indoor air quality of assembly halls.


Author(s):  
M. F. Mohamed ◽  
M. Behnia ◽  
S. King ◽  
D. Prasad

Cross ventilation is a more effective ventilation strategy in comparison to single-sided ventilation. In the NSW Residential Flat Design Code1 (RFDC) the majority of apartments are required to adopt cross ventilation. However, in the case of studio and one-bedroom apartments, it is acknowledged that single-sided ventilation may prevail. Deep plan studio and one-bedroom apartments may achieve lower amenity of summer thermal comfort and indoor air quality where mechanical ventilation is not provided by air conditioning. Since compliance with the code may allow up to 40% of apartments in a development in Sydney to be single sided, it is important to understand the natural ventilation performance of such apartments. The objective of this paper is to investigate the natural ventilation potential in single-sided ventilated apartments to improve indoor air quality and thermal comfort. This investigation includes simulating various facade treatments involving multiple opening and balcony configurations. Balcony configurations are included in this study because, in Sydney, a balcony is a compulsory architectural element in any apartment building. The study uses computational fluid dynamics (CFD) software to simulate and predict the ventilation performance of each apartment configuration. This study suggests that properly configured balconies and openings can significantly improve indoor ventilation performance for enhanced indoor air quality and thermal comfort, by optimizing the available prevailing wind. However, it is important to note that inappropriately designed fac¸ade treatments also could diminish natural ventilation performance.


2018 ◽  
Vol 18 (3) ◽  
pp. 422-435
Author(s):  
Ala'a A Mahdi ◽  
Sara Abbas

Computational Fluid Dynamics (CFD) of indoor environment as well as qualityconsiderations are important element in the study of energy consumption, thermal comfortand indoor air quality in buildings. This paper investigate a comparison work betweenimpinging jet, displacement, and mixing ventilation systems for an isothermal and nonisothermalventilated room for Indoor Air Quality (IAQ) and thermal human comfort underIraqi climate. For IJV system, draught discomfort is the issue of most concern since itsupplies cooled air directly to the occupied zone. This study investigated a number of factorsinfluencing draught discomfort and temperature stratification in an office environment. Theconsidered factors, supply airflow rate and supply air temperature. RNG K-? turbulencemodel was used with the turbulent flow. The second aspect included numerical analyses byadopting ANSYS FLUENT15 code to generate simulation models. A square shaped airsupply device was used with [0.1 times room height (h)] outlet terminal height from the footlevel end. The IJV system proved more efficient than displacement and mixing ventilationsystems. The Air Distribution Performance Index (ADPI) obtained for an isothermal andnon-isothermal ventilated room adopting IJV system gave best values (0.80, 0.83)respectively compared with the other two ventilation systems.


Sign in / Sign up

Export Citation Format

Share Document