Preliminary Irradiation Effect on Corrosion Resistance of Zirconium Alloys

Author(s):  
Vladimir Markelov ◽  
Vladimir Novikov ◽  
Alexandr Shevyakov ◽  
Anatoly Gusev ◽  
Michael Peregud ◽  
...  
Author(s):  
M. Y. Yao ◽  
B. X. Zhou ◽  
Q. Li ◽  
W. P. Zhang ◽  
L. Zhu ◽  
...  

In order to investigate systematically the effect of Bi addition on the corrosion resistance of zirconium alloys, different zirconium-based alloys, including Zr-4 (Zr-1.5Sn-0.2Fe-0.1Cr), S5 (Zr-0.8Sn-0.35Nb-0.4Fe-0.1Cr), T5 (Zr-0.7Sn-1.0Nb-0.3Fe-0.1Cr) and Zr-1Nb, were adopted to prepare the zirconium alloys containing Bi of 0∼0.5% in mass fraction. These alloys were denoted as Zr-4+xBi, S5+xBi, T5+xBi and Zr-1Nb+xBi, respectively. The corrosion behavior of these specimens was investigated by autoclave testing in lithiated water with 0.01 M LiOH or deionized water at 360°C/18.6 MPa and in superheated steam at 400 °C/10.3 MPa. The micro structure of the alloys was examined by TEM and the second phase particles (SPPs) were analyzed by EDS. Micro structure observation shows that the addition of Bi promotes the precipitation of Sn as second phase particles (SPPs) because Sn is in solid solution in α-Zr matrix in Zr-4, S5 and T5 alloys. The concentration of Bi dissolved in α-Zr matrix increase with the increase of Nb in the alloys, and the excess Bi precipitates as Bi-containing SPPs. The corrosion results show that the effect of Bi addition on the corrosion behavior of different zirconium-based alloys is very complicated, depending on their compositions and corrosion conditions. In the case of higher Bi concentration in α-Zr, the zirconium alloys exhibit better corrosion resistance. However, in the case of precipitation of Bi-containing SPPs, the corrosion resistance gets worse. This indicates that the solid solution of Bi in α-Zr matrix can improve the corrosion resistance, while the precipitation of the Bi-containing SPPs is harmful to the corrosion resistance.


2008 ◽  
Vol 38 ◽  
pp. 27-35 ◽  
Author(s):  
H.M. Nykyforchyn ◽  
V.S. Agarwala ◽  
M.D. Klapkiv ◽  
V.M. Posuvailo

Titanium, magnesium and zirconium alloys are widely used in industrial applications, which require high wear and corrosion resistance. However current methods of improving these properties often do not satisfy the requirements of service and functional properties. An alternative approach is the application of oxide-ceramic coatings using high temperature process. The coatings are applied by spark discharge plasma in the metal-electrolyte system at high voltages - PEO (plasma electrolytic oxidation) as an oxide synthesis method. This method has shown good results for aluminium alloys and with good prospects to be used for titanium, magnesium and zirconium alloys. Development of PEO technology to improve the wear and corrosion resistance of titanium, magnesium and zirconium alloys is discussed in this paper. It describes the methods for obtaining the required layer-thickness for a specified hardness, porosity, wear and corrosion resistance, sets up the optimal process parameters (voltage/current) by taking the relation of anodic to cathodic currents into account, and establishing the electrolyte content of different dopants.


2018 ◽  
Vol 1148 ◽  
pp. 128-135
Author(s):  
Repalle Jithendra Kumar ◽  
B.V.S. Raghu Vamsi ◽  
T. Siva Krishna ◽  
D. Tarun ◽  
M. Kamal Tej

Zirconium alloys are solid solutions of zirconium or other metals. Zirconium has very low absorption cross-section of thermal neutrons. Zirconium has high corrosion resistance, ductility and hardness. Zirconium is mainly used as a good refractory metal. Zirconium can be manufactured by using standard fabrication techniques. In the present scenario zirconium alloys are used in water reactors for the cladding of fuel rods in nuclear reactors in nuclear technology. We use the composition of zirconium alloys as more than 94.5 weight percentage of zirconium and less than 2.45 weight percentage of copper which are added to improve mechanical, thermal properties and corrosion resistance. This paper first focuses on the study of thermal properties of Zirconium. And this particularly concentrated on variation of Coefficient of Thermal Expansion by varying temperatures by using Dilatometer and as well as ANSYS


1995 ◽  
Vol 31 (3) ◽  
pp. 183-185 ◽  
Author(s):  
�. K. Malakhova ◽  
A. N. Kuzyukov ◽  
A. V. Meshcheryakov

Sign in / Sign up

Export Citation Format

Share Document