Influence of Hydrides upon the Fatigue Initiation Behavior of Irradiated Zircaloy-2

Author(s):  
Peter D. Honniball ◽  
Lucile Cogez ◽  
Charles F. Gee
Keyword(s):  
2011 ◽  
Vol 146 ◽  
pp. 213-225 ◽  
Author(s):  
T. Bellahcene ◽  
J. Capelle ◽  
Méziane Aberkane ◽  
Z. Azari

The aim of this work is to study the effects of hydrogen absorption on mechanical properties of pipe API 5L X70 steel. This study is conducted in special soil solution NS4 with pH 6.7 It show that the tensile properties like yield stress, ultimate strength and elongation at failure reduced under hydrogen embrittlement. Several fatigue tests (three (03) points bending tests) on roman tile specimens with notch are performed. Fatigue initiation is detected by acoustic emission. A comparison between specimens electrolytically charged with hydrogen and specimens without hydrogen absorption is made and it has been noted that fatigue initiation time is reduced when hydrogen embrittlement occurs. The field of elastoplastic stresses near the notch is computed by the finite-element method with the Abaqus software package. Effective distance and stress are calculated with the volumetric approach and the Notch intensity Factor of the roman tile specimen is determined for each loading value used in our tests.


Author(s):  
M. Mlikota ◽  
K. Dogahe ◽  
S. Schmauder ◽  
Ž. Božić

2018 ◽  
Vol 12 (46) ◽  
pp. 34-44
Author(s):  
Mohamed El Habiri ◽  
Mustapha Benachour ◽  
Nadjia Benachour

Author(s):  
Takao Nakamura ◽  
Itaru Saito ◽  
Yasuhide Asada

Japanese utilities and vendors have taken environmental effects on fatigue (EF) into consideration in the plant life management (PLM) activity of operating plants for several years. In Sep. 2000 MITI notified the utilities to adopt “The Guidelines for Evaluating Fatigue Initiation Life Reduction in LWR Environment (MITI guidelines)” for PLM evaluation of operating plants [1]. In April 2001, the study started to establish detailed procedures for EF evaluation and the committee was organized for developing detailed guidelines at Thermal and Nuclear Power Engineering Society (TENPES). The evaluation guidelines were completed and published as TENPES guidelines [2]. These guidelines proposed several practical options to apply fatigue life reduction factor for environmental effects (Fen) on actual operating plant fatigue evaluation.


2011 ◽  
Vol 27 (2) ◽  
pp. 267-277 ◽  
Author(s):  
C. F. Lee ◽  
S. I. Jeng ◽  
M. T. Liu

ABSTRACTIn this paper, an evolution equation of cyclically internal damage in the intrinsic damage time scale after the threshold cycles N0 was extended by employing its damage parameters proposed to be dependent of frequency (v) and temperature (T) under cyclic fatigue loading. The resulting damage-coupled endochronic viscoplasticity can drive v and T modified power form equations of cyclic damage and its fatigue initiation life = N1 + N0. Under fatigue tests with T effect and N0 = 0, the power form equation of N1(T)/(Th), named as T-LCM (T modified Lee Coffin-Manson) equation for fatigue initiation life can bederived. The T modified factor (Th) depends on the T dependent material elastic modulus, the cyclicstress-strain response and the damage parameters. Theoretical predictions in the life data ofSn/3.8Ag/0.7Cu solder alloy under cyclic strain test with Tϵ [298,393] K were very well.Also under fatigue tests with v effect only, the power form equation of /v-LCM (v modified Lee-Coffin-Manson) equation for fatigue initiation life can be derived. The v modified parameter depends on the v dependent cyclic stress-strain response and the damage parameters. Theoreticalpredictions in the life data of 96.5Sn/3.5Ag solder alloy with surface cracking effect i.e. N0 ≠ 0 during cyclicstrain tests with v ϵ [0.001,1] Hz were quite well.Obviously, the values of power exponents C in the T-LCM and the v-LCM equations can not be determinedsimply by the least square method as in the Coffin-Manson empirical formulae. Also, they must bejustified by constrains imposed in the material parameters defining in the cyclic stress-strain response andthe accumulation behavior of cyclic damage.The resultant equations derived here and the Δ-LCM equation derived under Δ angle proportional cyclicstrain tests can be combined together to form a T-v-ΔLCM equation for fatigue life studies in the solderalloys using bulk specimens or BGA solider joint specimens.


Sign in / Sign up

Export Citation Format

Share Document