Thermal Insulation for a Novel Flexible District Heating Pipe System

2009 ◽  
pp. 494-494-12
Author(s):  
B Eilhardt ◽  
G Stoeckl ◽  
G Ziemek
1999 ◽  
Vol 5 (5) ◽  
pp. 318-322
Author(s):  
Edvardas Tuomas ◽  
Saulius Neverbickas

The majority of dwellings in Lithuania are situated in blocks of flats. The dwellings were built after World War II and they are heated by single pipe central heating systems, connected to district heating. The dwellers are not quite satisfied with such a heating system and try to improve it, but do that in a wrong way, by increasing the surface of radiators. Such means lead to violation of thermal regime and comfort conditions for other dwellers. There exists sometimes the necessity of reconstructing premises and together—the heating system. During the reconstruction the primary heat fluxes from radiators should be known, but very often such data are lost and only the size of radiators (number of sections) are known. To reconstruct the required primary data for single pipe systems is complicated because the temperatures of inlet and outlet water for radiators are unknown. In this article the methodology is proposed how to perform the calculations leading to the required data. The aim of calculations is the establishment of heat fluxes from each radiator connected to the riser. Heat flux from radiator can be calculated according the formula (1) but the complex coefficient is unknown. It could be found from formulae (2) but some magnitudes are unknown. According to the proposed methodology the values of unknown magnitudes are taken approximately and calculations are performed with iterations. In such a way the flow rate of water in riser is established from formula (3), which is the same for each radiator (the property of single pipe system). From formulas (3) and (4) an equation is produced (5), and is used for calculations of unknown temperatures. The equation (6) is used for calculation of heat fluxes from radiators. To carry out the above-mentioned calculations without computer practically is impossible due to many cycles of iteration. The programme was prepared to make easy all these calculations. The scheme of algorithm of programme is given in Fig 1. An example of calculation is given in this article. Calculations were fulfilled by newly created programme. The riser chosen for calculation is shown in Fig 2. The results of calculation are given in Table 1. The table shows that according to the proposed methodology the programme based on it can be used for reconstruction of primary data of single pipe heating systems successfully.


2020 ◽  
Vol 42 (4) ◽  
pp. 74-82
Author(s):  
I.K. Bozhko

The article is devoted to a review of manufacturing technologies and methods for counteracting the effects of aging and destruction of a ball of thermal insulation in previously insulated pipes (PIP) of heating networks. The thermophysical characteristics of various blowing agents are compared; the superiority of cyclopentane in both thermophysical and environmental parameters is shown. The basic technologies for the production of pre-insulated pipe wires are considered. The advantages of «conti» technology using a diffusion barrier are highlighted. It is shown that for polyurethane foam, the main factor that suppresses heat transfer through PUR type thermal insulation is the low thermal conductivity of the gas mixture, which is "sealed" in the foam cells. The analysis of the influence of “aging” of the heat-insulating shell, namely, the diffusion of oxygen molecules into the structure of polyurethane foam, is carried out, and its negative effect on the thermal characteristics of the heat-insulating material is shown. Oxygen diffusion leads to a gradual increase in the value of the coefficient of thermal conductivity of the heat-insulating shell, and as a result, increases heat loss by the pipeline. The results of predictive calculations confirmed the effectiveness of the use of diffusion barriers in the manufacture of PIP. It is shown that when using PIP with a diffusion barrier, unproductive heat energy losses decrease on average by 20–21%, which, in turn, leads to a decrease in the amount of payments to end consumers and an increase in the quality and efficiency of district heating systems. It is also noted that polymer pre-insulated pipelines are practically not inferior in strength and reliability to steel PIP and at the same time, they have several advantages over steel PIP. It is recommended to increase the use of polymer PIP in the reconstruction of heating networks of the district heating system.


2021 ◽  
Vol 11 (20) ◽  
pp. 9685
Author(s):  
Massimo Corcione ◽  
Luca Cretara ◽  
Lucia Fontana ◽  
Alessandro Quintino

The heat losses from pre-insulated double-pipe district heating (DH) systems buried in a homogeneous soil are studied numerically. The study is conducted using the diameter of the pipes and their distance, the size of the insulation, the thermal conductivity ratio between the insulation and the soil, as well as the burial depth of the double-pipe system, as controlling parameters. A computational code based on a control-volume formulation of the finite-difference method has been developed using the open-source framework OpenFOAM with the purpose to compute the heat transfer rate across adjacent solid regions with different thermophysical properties. The main scopes of the study are: (a) to investigate in what measure the geometry and the relative position of the warm and cold pipes, as well as the temperature imbalance, the burial depth and the physical properties of both the insulation and the soil, affect the heat losses; (b) to analyze the existence of an optimal configuration of the DH system by the thermal resistance enhancement viewpoint; and (c) to develop accurate correlating equations for the evaluation of the thermal resistance existing between each pipe and its surroundings, useful for practical thermal engineering applications.


Sign in / Sign up

Export Citation Format

Share Document