Ozone Trends Determined from the Dobson Ozone Network

2009 ◽  
pp. 491-491-15
Author(s):  
JK Angell
Keyword(s):  
2018 ◽  
Vol 11 (2) ◽  
Author(s):  
R. P. Kane

Para solicitação de resumo, entrar em contato com editor-chefe ([email protected]). 


1986 ◽  
Vol 36 (3) ◽  
pp. 271-272 ◽  
Author(s):  
Herbert C. McKee
Keyword(s):  

2017 ◽  
Vol 17 (20) ◽  
pp. 12269-12302 ◽  
Author(s):  
William T. Ball ◽  
Justin Alsing ◽  
Daniel J. Mortlock ◽  
Eugene V. Rozanov ◽  
Fiona Tummon ◽  
...  

Abstract. Observations of stratospheric ozone from multiple instruments now span three decades; combining these into composite datasets allows long-term ozone trends to be estimated. Recently, several ozone composites have been published, but trends disagree by latitude and altitude, even between composites built upon the same instrument data. We confirm that the main causes of differences in decadal trend estimates lie in (i) steps in the composite time series when the instrument source data changes and (ii) artificial sub-decadal trends in the underlying instrument data. These artefacts introduce features that can alias with regressors in multiple linear regression (MLR) analysis; both can lead to inaccurate trend estimates. Here, we aim to remove these artefacts using Bayesian methods to infer the underlying ozone time series from a set of composites by building a joint-likelihood function using a Gaussian-mixture density to model outliers introduced by data artefacts, together with a data-driven prior on ozone variability that incorporates knowledge of problems during instrument operation. We apply this Bayesian self-calibration approach to stratospheric ozone in 10° bands from 60° S to 60° N and from 46 to 1 hPa (∼ 21–48 km) for 1985–2012. There are two main outcomes: (i) we independently identify and confirm many of the data problems previously identified, but which remain unaccounted for in existing composites; (ii) we construct an ozone composite, with uncertainties, that is free from most of these problems – we call this the BAyeSian Integrated and Consolidated (BASIC) composite. To analyse the new BASIC composite, we use dynamical linear modelling (DLM), which provides a more robust estimate of long-term changes through Bayesian inference than MLR. BASIC and DLM, together, provide a step forward in improving estimates of decadal trends. Our results indicate a significant recovery of ozone since 1998 in the upper stratosphere, of both northern and southern midlatitudes, in all four composites analysed, and particularly in the BASIC composite. The BASIC results also show no hemispheric difference in the recovery at midlatitudes, in contrast to an apparent feature that is present, but not consistent, in the four composites. Our overall conclusion is that it is possible to effectively combine different ozone composites and account for artefacts and drifts, and that this leads to a clear and significant result that upper stratospheric ozone levels have increased since 1998, following an earlier decline.


2007 ◽  
Vol 41 (33) ◽  
pp. 7127-7137 ◽  
Author(s):  
Louise Camalier ◽  
William Cox ◽  
Pat Dolwick
Keyword(s):  

Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
Zoë L. Fleming ◽  
Ruth M. Doherty ◽  
Erika von Schneidemesser ◽  
Christopher S. Malley ◽  
Owen R. Cooper ◽  
...  

This study quantifies the present-day global and regional distributions (2010–2014) and trends (2000–2014) for five ozone metrics relevant for short-term and long-term human exposure. These metrics, calculated by the Tropospheric Ozone Assessment Report, are: 4th highest daily maximum 8-hour ozone (4MDA8); number of days with MDA8 > 70 ppb (NDGT70), SOMO35 (annual Sum of Ozone Means Over 35 ppb) and two seasonally averaged metrics (3MMDA1; AVGMDA8). These metrics were explored at ozone monitoring sites worldwide, which were classified as urban or non-urban based on population and nighttime lights data. Present-day distributions of 4MDA8 and NDGT70, determined predominantly by peak values, are similar with highest levels in western North America, southern Europe and East Asia. For the other three metrics, distributions are similar with North–South gradients more prominent across Europe and Japan. Between 2000 and 2014, significant negative trends in 4MDA8 and NDGT70 occur at most US and some European sites. In contrast, significant positive trends are found at many sites in South Korea and Hong Kong, with mixed trends across Japan. The other three metrics have similar, negative trends for many non-urban North American and some European and Japanese sites, and positive trends across much of East Asia. Globally, metrics at many sites exhibit non-significant trends. At 59% of all sites there is a common direction and significance in the trend across all five metrics, whilst 4MDA8 and NDGT70 have a common trend at ~80% of all sites. Sensitivity analysis shows AVGMDA8 trends differ with averaging period (warm season or annual). Trends are unchanged at many sites when a 1995–2014 period is used; although fewer sites exhibit non-significant trends. Over the longer period 1970–2014, most Japanese sites exhibit positive 4MDA8/SOMO35 trends. Insufficient data exist to characterize ozone trends for the rest of Asia and other world regions.


2021 ◽  
Author(s):  
Tobias Kerzenmacher ◽  
Valentin Kozlov ◽  
Borja Sanchis ◽  
Ugur Cayoglu ◽  
Marcus Hardt ◽  
...  

<p>The European Open Science Cloud-Synergy (EOSC-Synergy) project delivers services that serve to expand the use of EOSC. One of these services, O3as, is being developed for scientists using chemistry-climate models to determine time series and eventually ozone trends for potential use in the quadrennial Global Assessment of Ozone Depletion, which will be published in 2022. A unified approach from a service like ours, which analyses results from a large number of different climate models, helps to harmonise the calculation of ozone trends efficiently and consistently. With O3as, publication-quality figures can be reproduced quickly and in a coherent way. This is done via a web application where users configure their queries to perform simple analyses. These queries are passed to the O3as service via an O3as REST API call. There, the O3as service processes the query and accesses the reduced dataset. To create a reduced dataset, regular tasks are executed on a high performance computer (HPC) to copy the primary data and perform data preparation (e.g. data reduction, standardisation and parameter unification). O3as uses EGI check-in (OIDC) to identify users and grant access to certain functionalities of the service, udocker (a tool to run Docker containers in multi-user space without root privileges) to perform data reduction in the HPC environment, and the Universitat Politècnica de València (UPV)  Infrastructure Manager to provision service resources (Kubernetes).</p>


Author(s):  
Richard S. Stolarski ◽  
Richard D. McPeters ◽  
James F. Gleason
Keyword(s):  

2014 ◽  
Vol 32 (8) ◽  
pp. 935-949 ◽  
Author(s):  
F. T. Huang ◽  
H. G. Mayr ◽  
J. M. Russell ◽  
M. G. Mlynczak

Abstract. We have derived ozone and temperature trends from years 2002 through 2012, from 20 to 100 km altitude, and 48° S to 48° N latitude, based on measurements from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite. For the first time, trends of ozone and temperature measured at the same times and locations are obtained, and their correlations should provide useful information about the relative importance of photochemistry versus dynamics over the longer term. We are not aware of comparable results covering this time period and spatial extent. For stratospheric ozone, until the late 1990s, previous studies found negative trends (decreasing amounts). In recent years, some empirical and modeling studies have shown the occurrence of a turnaround in the decreasing ozone, possibly beginning in the late 1990s, suggesting that the stratospheric ozone trend is leveling off or even turning positive. Our global results add more definitive evidence, expand the coverage, and show that at mid-latitudes (north and south) in the stratosphere, the ozone trends are indeed positive, with ozone having increased by a few percent from 2002 through 2012. However, in the tropics, we find negative ozone trends between 25 and 50 km. For stratospheric temperatures, the trends are mostly negatively correlated to the ozone trends. The temperature trends are positive in the tropics between 30 and 40 km, and between 20 and 25 km, at approximately 24° N and at 24° S latitude. The stratospheric temperature trends are otherwise mostly negative. In the mesosphere, the ozone trends are mostly flat, with suggestions of small positive trends at lower latitudes. The temperature trends in this region are mostly negative, showing decreases of up to ~ −3 K decade−1. In the lower thermosphere (between ~ 85 and 100 km), ozone and temperature trends are both negative. The ozone trend can approach ~ −10% decade−1, and the temperature trend can approach ~ −3 K decade−1. Aside from trends, these patterns of ozone–temperature correlations are consistent with previous studies of ozone and temperature perturbations such as the quasi-biennial (QBO) and semiannual (SAO) oscillations, and add confidence to the results.


2002 ◽  
Vol 27 (6-8) ◽  
pp. 461-469 ◽  
Author(s):  
Johannes Staehelin ◽  
Jörg Mäder ◽  
Andrea K. Weiss ◽  
Christof Appenzeller
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document