An Elastic-Plastic Fracture Mechanics Prediction of Stress-Corrosion Cracking in a Girth-Welded Pipe

Author(s):  
IS Abou-Sayed ◽  
J Ahmad ◽  
FW Brust ◽  
MF Kanninen
2017 ◽  
Vol 27 (5) ◽  
pp. 729-753 ◽  
Author(s):  
Witchapong Sochu ◽  
Nitikorn Noraphaiphipaksa ◽  
Anchalee Manonukul ◽  
Chaosuan Kanchanomai

With the growth of urbanization and industries, the seawater near coastal areas has become polluted, and the nickel aluminium bronze components around coastal areas are affected by ammonia-containing seawater. Unfortunately, the influence of the ammonia concentration in seawater on the stress corrosion cracking of thin nickel aluminium bronze components with large plastic zones at the defects has not been evaluated before. In the present work, stress corrosion cracking experiments on nickel aluminium bronze components under artificial seawater and ammonia-containing artificial seawater were conducted using a four-point bending technique. The elastic–plastic fracture mechanics parameter ( J-integral) was evaluated using finite element analysis. The J-integral successfully characterized the crack growth rate under the present corrosive environments. Stress corrosion cracking was possible under both artificial seawater and ammonia-containing artificial seawater. The threshold J-integral for susceptibility to stress corrosion cracking ( JSCC) and fracture toughness ( JC) was the highest for stress corrosion cracking under artificial seawater and decreased as the amount of ammonium hydroxide added to the artificial seawater increased.


Author(s):  
Frederick W. Brust ◽  
R. E. Kurth ◽  
D. J. Shim ◽  
David Rudland

Risk based treatment of degradation and fracture in nuclear power plants has emerged as an important topic in recent years. One degradation mechanism of concern is stress corrosion cracking. Stress corrosion cracking is strongly driven by the weld residual stresses (WRS) which develop in nozzles and piping from the welding process. The weld residual stresses can have a large uncertainty associated with them. This uncertainty is caused by many sources including material property variations of base and welds metal, weld sequencing, weld repairs, weld process method, and heat inputs. Moreover, often mitigation procedures are used to correct a problem in an existing plant, which also leads to uncertainty in the WRS fields. The WRS fields are often input to probabilistic codes from weld modeling analyses. Thus another source of uncertainty is represented by the accuracy of the predictions compared with a limited set of measurements. Within the framework of a probabilistic degradation and fracture mechanics code these uncertainties must all be accounted for properly. Here we summarize several possibilities for properly accounting for the uncertainty inherent in the WRS fields. Several examples are shown which illustrate ranges where these treatments work well and ranges where improvement is needed. In addition, we propose a new method for consideration. This method consists of including the uncertainty sources within the WRS fields and tabulating them within tables which are then sampled during the probabilistic realization. Several variations of this process are also discussed. Several examples illustrating the procedures are presented.


CORROSION ◽  
1974 ◽  
Vol 30 (5) ◽  
pp. 181-189 ◽  
Author(s):  
W. F. CZYRKLIS ◽  
M. LEVY

Abstract The stress corrosion cracking (SCC) behavior of U-3/4% Ti, and uranium alloys 3/4% Quad, 1% Quad, and 1% Quint have been studied utilizing a linear elastic fracture mechanics approach. The threshold stress intensities for stress corrosion crack propagation for these alloys have been determined in distilled H2O and NaCl solutions containing 50 ppm Cl− and 21,000 ppm Cl−. All of the alloys studied may be classified as very susceptible to SCC in aqueous solutions since they exhibit SCC in distilled H2O (<1 ppm Cl−) and have low KIscc values in NaCl solutions. Crack extension in all of the alloys in all environments was transgranular and failure occurred by brittle quasicleavage fracture in NaCl solution.


Author(s):  
Akihiro Mano ◽  
Jinya Katsuyama ◽  
Yinsheng Li

Abstract A probabilistic fracture mechanics (PFM) analysis code, PASCAL-SP, has been developed by Japan Atomic Energy Agency (JAEA) to evaluate the failure probability of piping within nuclear power plants considering aged-related degradations such as stress corrosion cracking and fatigue for both pressurized water reactor and boiling water reactor environments. To strengthen the applicability of PASCAL-SP, a benchmarking study is being performed with a PFM analysis code, xLPR, which has been developed by U.S.NRC in collaboration with EPRI. In this benchmarking study, deterministic and probabilistic analyses are undertaken on primary water stress corrosion cracking using the common analysis conditions. A deterministic analysis on the weld residual stress distributions is also considered. These analyses are carried out by U.S.NRC and JAEA independently using their own codes. Currently, the deterministic analyses by both xLPR and PASCAL-SP codes have been finished and probabilistic analyses are underway. This paper presents the details of conditions and comparisons of the results between the two aforementioned codes for the deterministic analyses. Both codes were found to provide almost the same results including the values of stress intensity factor. The conditions and results of the probabilistic analysis obtained from PASCAL-SP are also discussed.


1972 ◽  
Vol 7 (4) ◽  
pp. 189-191 ◽  
Author(s):  
J. M. West ◽  
I. M. Austen ◽  
C. Tyzack

Sign in / Sign up

Export Citation Format

Share Document