scholarly journals Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain

1990 ◽  
Vol 10 (8) ◽  
pp. 2735-2748 ◽  
Author(s):  
MP Kaplan ◽  
SS Chin ◽  
KH Fliegner ◽  
RK Liem
1999 ◽  
Vol 274 (14) ◽  
pp. 9881-9890 ◽  
Author(s):  
Peter M. Steinert ◽  
Ying-Hao Chou ◽  
Veena Prahlad ◽  
David A. D. Parry ◽  
Lyuben N. Marekov ◽  
...  

Development ◽  
1986 ◽  
Vol 97 (1) ◽  
pp. 201-223
Author(s):  
S. F. Godsave ◽  
B. H. Anderton ◽  
C. C. Wylie

Antibodies against various intermediate filament proteins have been used to follow cell differentiation in the early Xenopus embryo. Three new monoclonal antibodies against Xenopus cytokeratins raised against Triton-insoluble material from tadpoles (RD35/2a, RD35/3a and D3/3a), two antibodies against mammalian cytokeratins (LE65 and LP3K), monoclonal anti-(rat 200K neurofilament protein), rabbit anti-(rat glial filament acidic protein), and rabbit antibodies to hamster and calf vimentin were used. We show that cytokeratins are present in the early central nervous system (CNS) and persist in the ependymal cells of the adult CNS. We also show that the notochord contains cytokeratin. The ontogeny of intermediate filament protein appearance in the CNS, skin and notochord between neural fold stage and swimming tadpole stage are described. These results are discussed in particular with regard to the use of the antibodies as differentiation markers.


1996 ◽  
Vol 132 (1) ◽  
pp. 153-165 ◽  
Author(s):  
J B Bachant ◽  
M W Klymkowsky

Inside the interphase cell, approximately 5% of the total intermediate filament protein exists in a soluble form. Past studies using velocity gradient sedimentation (VGS) indicate that soluble intermediate filament protein exists as an approximately 7 S tetrameric species. While studying intermediate filament assembly dynamics in the Xenopus oocyte, we used both VGS and size-exclusion chromatography (SEC) to analyze the soluble form of keratin. Previous studies (Coulombe, P. A., and E. Fuchs. 1990. J. Cell Biol. 111:153) report that tetrameric keratins migrate on SEC with an apparent molecular weight of approximately 150,000; the major soluble form of keratin in the oocyte, in contrast, migrates with an apparent molecular weight of approximately 750,000. During oocyte maturation, the keratin system disassembles into a soluble form (Klymkowsky, M. W., L. A. Maynell, and C. Nislow. 1991. J. Cell Biol. 114:787) and the amount of the 750-kD keratin complex increases dramatically. Immunoprecipitation analysis of soluble keratin from matured oocytes revealed the presence of type I and type II keratins, but no other stoichiometrically associated polypeptides, suggesting that the 750-kD keratin complex is composed solely of keratin. To further study the formation of the 750-kD keratin complex, we used rabbit reticulocyte lysates (RRL). The 750-kD keratin complex was formed in RRLs contranslating type I and type II Xenopus keratins, but not when lysates translated type I or type II keratin RNAs alone. The 750-kD keratin complex could be formed posttranslationally in an ATP-independent manner when type I and type II keratin translation reactions were mixed. Under conditions of prolonged incubation, such as occur during VGS analysis, the 750-kD keratin complex disassembled into a 7 S (by VGS), 150-kD (by SEC) form. In urea denaturation studies, the 7 S/150-kD form could be further disassembled into an 80-kD species that consists of cofractionating dimeric and monomeric keratin. Based on these results, the 750-kD species appears to be a supratetrameric complex of keratins and is the major, soluble form of keratin in both prophase and M-phase oocytes, and RRL reactions.


Sign in / Sign up

Export Citation Format

Share Document