scholarly journals Long-term structural remodeling in Aplysia sensory neurons requires de novo protein synthesis during a critical time period

1995 ◽  
Vol 15 (5) ◽  
pp. 3519-3525 ◽  
Author(s):  
FA O'Leary ◽  
JH Byrne ◽  
LJ Cleary
1977 ◽  
Vol 74 (2) ◽  
pp. 524-530 ◽  
Author(s):  
H Gainer ◽  
I Tasaki ◽  
R J Lasek

Incubation of intracellulary perfused squid giant axons in [3H]leucine demonstrated that newly synthesized proteins appeared in the perfusate after a 45-min lag period. The transfer of labeled proteins was shown to occur steadily over 8 h of incubation, in the presence of an intact axonal plasma membrane as evidenced by the ability of the perfused axon to conduct propagated action potentials over this time-period. Intracellularly perfused RNase did not affect this transfer, whereas extracellularly applied puromycin, which blocked de novo protein synthesis in the glial sheath, prevented the appearance of labeled proteins in the perfusate. The uptake of exogenous 14C-labeled bovine serum albumin (BSA) into the axon had entirely different kinetics than the endogenous glial labeled protein transfer process. The data provide support for the glia-neuron protein transfer hypothesis.


2020 ◽  
Author(s):  
Prerana Shrestha ◽  
Zhe Shan ◽  
Maggie Marmarcz ◽  
Karen San Agustin Ruiz ◽  
Adam Taye Zerihoun ◽  
...  

To survive in a dynamic environment, animals need to identify and appropriately respond to stimuli that signal danger1,2. At the same time, animal survival also depends on suppressing the threat response during a stimulus that predicts absence of threat, i.e. safety3-5. Understanding the biological substrates of differential threat memories in which animals learn to flexibly switch between expressing and suppressing defensive responses to a threat-predictive cue and a safety cue, respectively, is critical for developing treatments for memory disorders such as PTSD6. A key brain area for processing and storing threat memories is the centrolateral amygdala (CeL), which receives convergent sensory inputs from the parabrachial nucleus and the basolateral amygdala and connects directly to the output nucleus of amygdala, the centromedial nucleus, to mediate defensive responses7-9. Despite a plethora of studies on the importance of neuronal activity in specific CeL neuronal populations during memory acquisition and retrieval10-12, little is known about regulation of their protein synthesis machinery. Consolidation of long-term, but not short-term, threat memories requires de novo protein synthesis, which suggests that the translation machinery in CeL interneurons is tightly regulated in order to stabilize associative memories. Herein, we have applied intersectional chemogenetic strategies in CeL interneurons to block cell type-specific translation initiation programs that are sensitive to depletion of eukaryotic initiation factor 4E (eIF4E) and phosphorylation of eukaryotic initiation factor 2α (p-eIF2α), respectively. We show that in a differential threat conditioning paradigm, de novo translation in somatostatin-expressing (SOM) interneurons in the CeL is necessary for long-term storage of conditioned threat response whereas de novo translation in protein kinase Cδ-expressing (PKCδ) interneurons in the CeL is essential for storing conditioned response inhibition to a safety cue. Further, we show that oxytocinergic neuromodulation of PKCδ interneurons during differential threat learning is important for long-lasting cued threat discrimination. Our results indicate that the molecular elements of a differential threat memory trace are compartmentalized in distinct CeL interneuron populations and provide new mechanistic insight into the role of de novo protein synthesis in consolidation of long-term memories.


2002 ◽  
Vol 76 (15) ◽  
pp. 7578-7586 ◽  
Author(s):  
Bodil Øster ◽  
Per Höllsberg

ABSTRACT Herpesvirus gene expression is divided into immediate-early (IE) or α genes, early (E) or β genes, and late (L) or γ genes on the basis of temporal expression and dependency on other gene products. By using real-time PCR, we have investigated the expression of 35 human herpesvirus 6B (HHV-6B) genes in T cells infected by strain PL-1. Kinetic analysis and dependency on de novo protein synthesis and viral DNA polymerase activity suggest that the HHV-6B genes segregate into six separate kinetic groups. The genes expressed early (groups I and II) and late (groups V and VI) corresponded well with IE and L genes, whereas the intermediate groups III and IV contained E and L genes. Although HHV-6B has characteristics similar to those of other roseoloviruses in its overall gene regulation, we detected three B-variant-specific IE genes. Moreover, genes that were independent of de novo protein synthesis clustered in an area of the viral genome that has the lowest identity to the HHV-6A variant. The organization of IE genes in an area of the genome that differs from that of HHV-6A underscores the distinct differences between HHV-6B and HHV-6A and may provide a basis for further molecular and immunological analyses to elucidate their different biological behaviors.


2004 ◽  
Vol 31 (8) ◽  
pp. 847 ◽  
Author(s):  
Tae-Hwan Kim ◽  
Bok-Rye Lee ◽  
Woo-Jin Jung ◽  
Kil-Yong Kim ◽  
Jean-Christophe Avice ◽  
...  

The kinetics of protein incorporation from newly-absorbed nitrogen (N, de novo protein synthesis) was estimated by 15N tracing in 18-week-old white clover plants (Trifolium repens L. cv. Regal) during 7 d of water-deficit treatment. The physiological relationship between kinetics and accumulation of proline and ammonia in response to the change in leaf-water parameters was also assessed. All leaf-water parameters measured decreased gradually under water deficit. Leaf and root dry mass was not significantly affected during the first 3 d when decreases in leaf-water parameters were substantial. However, metabolic parameters such as total N, proline and ammonia were significantly affected within 1 d of commencement of water-deficit treatment. Water-deficit treatment significantly increased the proline and NH3–NH4+ concentrations in both leaves and roots. There was a marked reduction in the amount of N incorporated into the protein fraction from the newly absorbed N (NANP) in water-deficit stressed plants, particularly in leaf tissue. This reduction in NANP was strongly associated with an increased concentration of NH3–NH4+ in roots (P≤0.05) and proline (P≤0.01) in leaves and roots. These results suggest that proline accumulation may be a sensitive biochemical indicator of plant water status and of the dynamics of de novo protein synthesis in response to stress severity.


Author(s):  
Margarita Elena Papandreou ◽  
Konstantinos Palikaras ◽  
Nektarios Tavernarakis

Sign in / Sign up

Export Citation Format

Share Document