scholarly journals Distinct Roles for Ionotropic and Metabotropic Glutamate Receptors in the Maturation of Excitatory Synapses

2000 ◽  
Vol 20 (6) ◽  
pp. 2229-2237 ◽  
Author(s):  
Stephen N. Gomperts ◽  
Reed Carroll ◽  
Robert C. Malenka ◽  
Roger A. Nicoll
2022 ◽  
Author(s):  
K. Ulrich Bayer ◽  
Sarah G Cook ◽  
Nicole L Rumian

The Ca2+/calmodulin-dependent protein kinase II (CaMKII) mediates both long-term potentiation and depression (LTP and LTD) of excitatory synapses, two opposing forms of synaptic plasticity induced by strong versus weak stimulation of NMDA-type glutamate receptors (NMDARs). NMDAR-dependent LTD is prevalent in juvenile hippocampus, but in mature hippocampus, LTD is still readily induced by stimulating metabotropic glutamate receptors (mGluRs). Here we show that mGluR-dependent LTD also requires CaMKII and its T286 autophosphorylation that induces Ca2+-independent autonomous kinase activity. This autophosphorylation (i) accelerated CaMKII movement to excitatory synapses after LTP stimuli and (ii) was required for the movement to inhibitory synapses after NMDAR-LTD stimuli. Similar to NMDAR-LTD, the mGluR-LTD stimuli did not induce any CaMKII movement to excitatory synapses. However, in contrast to NMDAR-LTD, the mGluR-LTD did not involve CaMKII movement to inhibitory synapses and did not require additional T305/306 autophosphorylation. Taken together, even though CaMKII T286 autophosphorylation has a longstanding prominent role in LTP, it is also required for both major forms of LTD in hippocampal neurons, albeit with differential requirements for the heterosynaptic communication of excitatory signals to inhibitory synapses.


Sign in / Sign up

Export Citation Format

Share Document