scholarly journals The Neuroscience of Natural Rewards: Relevance to Addictive Drugs

2002 ◽  
Vol 22 (9) ◽  
pp. 3306-3311 ◽  
Author(s):  
Ann E. Kelley ◽  
Kent C. Berridge
Author(s):  
Emma Puighermanal ◽  
Emmanuel Valjent

Addictive drugs trigger persistent synaptic and structural changes in the neuronal reward circuits that are thought to underlie the development of drug-adaptive behavior. While transcriptional and epigenetic modifications are known to contribute to these circuit changes, accumulating evidence indicates that altered mRNA translation is also a key molecular mechanism. This chapter reviews recent studies demonstrating how addictive drugs alter protein synthesis and/or the translational machinery and how this leads to neuronal circuit remodeling and behavioral changes. Future work will determine precisely which neuronal circuits and cell types participate in these changes. The chapter summarizes current methodologies for identifying cell type-specific mRNAs whose translation is affected by drugs of abuse and gives recent examples of the mechanistic insights into addiction they provide.


2021 ◽  
pp. 147479
Author(s):  
Casper Schmidt ◽  
Carsten Gleesborg ◽  
Hema Schmidt ◽  
Timo L. Kvamme ◽  
Torben E. Lund ◽  
...  

2021 ◽  
Vol 44 (1) ◽  
Author(s):  
Christian Lüscher ◽  
Patricia H. Janak

Addiction is a disease characterized by compulsive drug seeking and consumption observed in 20–30% of users. An addicted individual will favor drug reward over natural rewards, despite major negative consequences. Mechanistic research on rodents modeling core components of the disease has identified altered synaptic transmission as the functional substrate of pathological behavior. While the initial version of a circuit model for addiction focused on early drug adaptive behaviors observed in all individuals, it fell short of accounting for the stochastic nature of the transition to compulsion. The model builds on the initial pharmacological effect common to all addictive drugs—an increase in dopamine levels in the mesolimbic system. Here, we consolidate this early model by integrating circuits underlying compulsion and negative reinforcement. We discuss the genetic and epigenetic correlates of individual vulnerability. Many recent data converge on a gain-of-function explanation for circuit remodeling, revealing blueprints for novel addiction therapies. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Joshua Radke ◽  
Kelly Tocki ◽  
Brett A. Faine

2021 ◽  
pp. 1-10
Author(s):  
Eric L. Garland ◽  
Spencer T. Fix ◽  
Justin P. Hudak ◽  
Edward M. Bernat ◽  
Yoshio Nakamura ◽  
...  

Abstract Background Neuropsychopharmacologic effects of long-term opioid therapy (LTOT) in the context of chronic pain may result in subjective anhedonia coupled with decreased attention to natural rewards. Yet, there are no known efficacious treatments for anhedonia and reward deficits associated with chronic opioid use. Mindfulness-Oriented Recovery Enhancement (MORE), a novel behavioral intervention combining training in mindfulness with savoring of natural rewards, may hold promise for treating anhedonia in LTOT. Methods Veterans receiving LTOT (N = 63) for chronic pain were randomized to 8 weeks of MORE or a supportive group (SG) psychotherapy control. Before and after the 8-week treatment groups, we assessed the effects of MORE on the late positive potential (LPP) of the electroencephalogram and skin conductance level (SCL) during viewing and up-regulating responses (i.e. savoring) to natural reward cues. We then examined whether these neurophysiological effects were associated with reductions in subjective anhedonia by 4-month follow-up. Results Patients treated with MORE demonstrated significantly increased LPP and SCL to natural reward cues and greater decreases in subjective anhedonia relative to those in the SG. The effect of MORE on reducing anhedonia was statistically mediated by increases in LPP response during savoring. Conclusions MORE enhances motivated attention to natural reward cues among chronic pain patients on LTOT, as evidenced by increased electrocortical and sympathetic nervous system responses. Given neurophysiological evidence of clinical target engagement, MORE may be an efficacious treatment for anhedonia among chronic opioid users, people with chronic pain, and those at risk for opioid use disorder.


Sign in / Sign up

Export Citation Format

Share Document