scholarly journals Age-Dependent Cerebrovascular Abnormalities and Blood Flow Disturbances in APP23 Mice Modeling Alzheimer's Disease

2003 ◽  
Vol 23 (24) ◽  
pp. 8453-8459 ◽  
Author(s):  
Nicolau Beckmann ◽  
Alexandra Schuler ◽  
Thomas Mueggler ◽  
Eric P. Meyer ◽  
Karl-Heinz Wiederhold ◽  
...  
2015 ◽  
Vol 12 (10) ◽  
pp. 914-922 ◽  
Author(s):  
Maximilian Wiesmann ◽  
Carmen Capone ◽  
Valerio Zerbi ◽  
Laura Mellendijk ◽  
Arend Heerschap ◽  
...  

2020 ◽  
Vol 29 (5) ◽  
pp. 817-833 ◽  
Author(s):  
Masataka Kikuchi ◽  
Michiko Sekiya ◽  
Norikazu Hara ◽  
Akinori Miyashita ◽  
Ryozo Kuwano ◽  
...  

Abstract The molecular biological mechanisms of Alzheimer’s disease (AD) involve disease-associated crosstalk through many genes and include a loss of normal as well as a gain of abnormal interactions among genes. A protein domain network (PDN) is a collection of physical bindings that occur between protein domains, and the states of the PDNs in patients with AD are likely to be perturbed compared to those in normal healthy individuals. To identify PDN changes that cause neurodegeneration, we analysed the PDNs that occur among genes co-expressed in each of three brain regions at each stage of AD. Our analysis revealed that the PDNs collapsed with the progression of AD stage and identified five hub genes, including Rac1, as key players in PDN collapse. Using publicly available as well as our own gene expression data, we confirmed that the mRNA expression level of the RAC1 gene was downregulated in the entorhinal cortex (EC) of AD brains. To test the causality of these changes in neurodegeneration, we utilized Drosophila as a genetic model and found that modest knockdown of Rac1 in neurons was sufficient to cause age-dependent behavioural deficits and neurodegeneration. Finally, we identified a microRNA, hsa-miR-101-3p, as a potential regulator of RAC1 in AD brains. As the Braak neurofibrillary tangle (NFT) stage progressed, the expression levels of hsa-miR-101-3p were increased specifically in the EC. Furthermore, overexpression of hsa-miR-101-3p in the human neuronal cell line SH-SY5Y caused RAC1 downregulation. These results highlight the utility of our integrated network approach for identifying causal changes leading to neurodegeneration in AD.


2010 ◽  
Vol 30 (11) ◽  
pp. 1883-1889 ◽  
Author(s):  
Allyson R Zazulia ◽  
Tom O Videen ◽  
John C Morris ◽  
William J Powers

Studies in transgenic mice overexpressing amyloid precursor protein (APP) demonstrate impaired autoregulation of cerebral blood flow (CBF) to changes in arterial pressure and suggest that cerebrovascular dysfunction may be critically important in the development of pathological Alzheimer's disease (AD). Given the relevance of such a finding for guiding hypertension treatment in the elderly, we assessed autoregulation in individuals with AD. Twenty persons aged 75±6 years with very mild or mild symptomatic AD (Clinical Dementia Rating 0.5 or 1.0) underwent 15O-positron emission tomography (PET) CBF measurements before and after mean arterial pressure (MAP) was lowered from 107±13 to 92±9 mm Hg with intravenous nicardipine; 11C-PIB-PET imaging and magnetic resonance imaging (MRI) were also obtained. There were no significant differences in mean CBF before and after MAP reduction in the bilateral hemispheres (−0.9±5.2 mL per 100 g per minute, P=0.4, 95% confidence interval (CI)=−3.4 to 1.5), cortical borderzones (−1.9±5.0 mL per 100 g per minute, P=0.10, 95% CI=−4.3 to 0.4), regions of T2W-MRI-defined leukoaraiosis (−0.3±4.4 mL per 100 g per minute, P=0.85, 95% CI=−3.3 to 3.9), or regions of peak 11C-PIB uptake (−2.5±7.7 mL per 100 g per minute, P=0.30, 95% CI=−7.7 to 2.7). The absence of significant change in CBF with a 10 to 15 mm Hg reduction in MAP within the normal autoregulatory range demonstrates that there is neither a generalized nor local defect of autoregulation in AD.


2001 ◽  
Vol 12 (2) ◽  
pp. 89-97 ◽  
Author(s):  
Flavio Nobili ◽  
Francesco Copello ◽  
Ferdinando Buffoni ◽  
Paolo Vitali ◽  
Nicola Girtler ◽  
...  

2015 ◽  
Vol 35 (32) ◽  
pp. 11346-11357 ◽  
Author(s):  
A. Megill ◽  
T. Tran ◽  
K. Eldred ◽  
N. J. Lee ◽  
P. C. Wong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document