Neurokinin B-expressing neurons of the central extended amygdala mediate inhibitory synaptic input onto melanin-concentrating hormone neuron subpopulations

2021 ◽  
pp. JN-RM-2600-20
Author(s):  
Akie Fujita ◽  
Lily Zhong ◽  
Monica Antony ◽  
Elizabeth Chamiec-Case ◽  
Laura E. Mickelsen ◽  
...  
1987 ◽  
Vol 409 (1) ◽  
pp. 139-142 ◽  
Author(s):  
Simon Alford ◽  
Thelma L. Williams

Author(s):  
Simon Weiler ◽  
Drago Guggiana Nilo ◽  
Tobias Bonhoeffer ◽  
Mark Hübener ◽  
Tobias Rose ◽  
...  

AbstractNeocortical pyramidal cells (PCs) display functional specializations defined by their excitatory and inhibitory circuit connectivity. For layer 2/3 (L2/3) PCs, little is known about the detailed relationship between their neuronal response properties, dendritic structure and their underlying circuit connectivity at the level of single cells. Here, we ask whether L2/3 PCs in mouse primary visual cortex (V1) differ in their functional intra- and interlaminar connectivity patterns, and how this relates to differences in visual response properties. Using a combined approach, we first characterized the orientation and direction tuning of individual L2/3 PCs with in vivo 2-photon calcium imaging. Subsequently, we performed excitatory and inhibitory synaptic input mapping of the same L2/3 PCs in brain slices using laser scanning photostimulation (LSPS).Our data from this structure-connectivity-function analysis show that the sources of excitatory and inhibitory synaptic input are different in their laminar origin and horizontal location with respect to cell position: On average, L2/3 PCs receive more inhibition than excitation from within L2/3, whereas excitation dominates input from L4 and L5. Horizontally, inhibitory input originates from locations closer to the horizontal position of the soma, while excitatory input arises from more distant locations in L4 and L5. In L2/3, the excitatory and inhibitory inputs spatially overlap on average. Importantly, at the level of individual neurons, PCs receive inputs from presynaptic cells located spatially offset, vertically and horizontally, relative to the soma. These input offsets show a systematic correlation with the preferred orientation of the postsynaptic L2/3 PC in vivo. Unexpectedly, this correlation is higher for inhibitory input offsets within L2/3 than for excitatory input offsets. When relating the dendritic complexity of L2/3 PCs to their orientation tuning, we find that sharply tuned cells have a less complex apical tree compared to broadly tuned cells. These results indicate that the spatial input offsets of the functional input connectivity are linked to orientation preference, while the orientation selectivity of L2/3 PCs is more related to the dendritic complexity.


2006 ◽  
Vol 97 (5) ◽  
pp. 1269-1278 ◽  
Author(s):  
Patricia Salama-Cohen ◽  
Maria-Angeles Arevalo ◽  
Rosemarie Grantyn ◽  
Alfredo Rodriguez-Tebar

1977 ◽  
Vol 66 (1) ◽  
pp. 159-171
Author(s):  
H. L. Gillary

1. Photic stimulation of the mature eye of Strombus can evoke in the optic nerve ‘on’ activity in numerous small afferent fibres and repetitive ‘off’ bursts of afferent impulses in a smaller number of larger fibres. 2. Synchronous invasion of the eye by electrically evoked impulses in small optic nerve fibres (apparently the ‘on’ afferents, antidromically activated) can evoke a burst of impulses in the larger ‘off’ fibres which propagate away from the eye. Invasion of the eye via one branch of optic nerve can evoke an answering burst in another branch. 3. Such electrically evoked bursts are similar to light-evoked ‘off’ bursts with respect to their impulse composition, their ability to be inhibited by illumination of the eye, and their susceptibility to MgCl2 anaesthesia. 4. Invasion of the eye by a train of repetitive electrically evoked impulses in the absence of photic stimulation can give rise to repetitive ‘off’ bursts as well as concomitant oscillatory potentials in the eye which are similar to those normally evoked by cessation of a photic stimulus. 5. The electrically evoked ‘off’ bursts appear to be caused by an excitatory rebound following the cessation of inhibitory synaptic input from photoreceptors which can be antidromically activated by electrical stimulation of the optic nerve. 6. The experimental results suggest that the rhythmic discharge of the ‘off’ fibres evoked by the cessation of a photic stimulus is mediated by the abrupt decrease of inhibitory synaptic input from the receptors.


2021 ◽  
pp. 108779
Author(s):  
Magdalena Kusek ◽  
Marcin Siwiec ◽  
Joanna E. Sowa ◽  
Bartosz Bobula ◽  
Wiktor Bilecki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document