scholarly journals Pou4f1 Defines a Subgroup of Type I Spiral Ganglion Neurons and Is Necessary for Normal Inner Hair Cell Presynaptic Ca2+ Signaling

2019 ◽  
Vol 39 (27) ◽  
pp. 5284-5298 ◽  
Author(s):  
Hanna E. Sherrill ◽  
Philippe Jean ◽  
Elizabeth C. Driver ◽  
Tessa R. Sanders ◽  
Tracy S. Fitzgerald ◽  
...  
2019 ◽  
Vol 116 (18) ◽  
pp. 9084-9093 ◽  
Author(s):  
Philippe Jean ◽  
Özge Demet Özçete ◽  
Basile Tarchini ◽  
Tobias Moser

Encoding the wide range of audible sounds in the mammalian cochlea is collectively achieved by functionally diverse type I spiral ganglion neurons (SGNs) at each tonotopic position. The firing of each SGN is thought to be driven by an individual active zone (AZ) of a given inner hair cell (IHC). These AZs present distinct properties according to their position within the IHC, to some extent forming a gradient between the modiolar and the pillar IHC side. In this study, we investigated whether signaling involved in planar polarity at the apical surface can influence position-dependent AZ properties at the IHC base. Specifically, we tested the role of Gαi proteins and their binding partner LGN/Gpsm2 implicated in cytoskeleton polarization and hair cell (HC) orientation along the epithelial plane. Using high and superresolution immunofluorescence microscopy as well as patch-clamp combined with confocal Ca2+ imaging we analyzed IHCs in which Gαi signaling was blocked by Cre-induced expression of the pertussis toxin catalytic subunit (PTXa). PTXa-expressing IHCs exhibited larger CaV1.3 Ca2+-channel clusters and consequently greater Ca2+ influx at the whole-cell and single-synapse levels, which also showed a hyperpolarized shift of activation. Moreover, PTXa expression collapsed the modiolar–pillar gradients of ribbon size and maximal synaptic Ca2+ influx. Finally, genetic deletion of Gαi3 and LGN/Gpsm2 also disrupted the modiolar–pillar gradient of ribbon size. We propose a role for Gαi proteins and LGN in regulating the position-dependent AZ properties in IHCs and suggest that this signaling pathway contributes to setting up the diverse firing properties of SGNs.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Thomas M Coate ◽  
Nathalie A Spita ◽  
Kaidi D Zhang ◽  
Kevin T Isgrig ◽  
Matthew W Kelley

Auditory function is dependent on the formation of specific innervation patterns between mechanosensory hair cells (HCs) and afferent spiral ganglion neurons (SGNs). In particular, type I SGNs must precisely connect with inner HCs (IHCs) while avoiding connections with nearby outer HCs (OHCs). The factors that mediate these patterning events are largely unknown. Using sparse-labeling and time-lapse imaging, we visualized for the first time the behaviors of developing SGNs including active retraction of processes from OHCs, suggesting that some type I SGNs contact OHCs before forming synapses with IHCs. In addition, we demonstrate that expression of Semaphorin-3F in the OHC region inhibits type I SGN process extension by activating Neuropilin-2 receptors expressed on SGNs. These results suggest a model in which cochlear innervation patterns by type I SGNs are determined, at least in part, through a Semaphorin-3F-mediated inhibitory signal that impedes processes from extending beyond the IHC region.


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0183773 ◽  
Author(s):  
Tian Yang ◽  
Jennifer Kersigo ◽  
Shu Wu ◽  
Bernd Fritzsch ◽  
Alexander G. Bassuk

Sign in / Sign up

Export Citation Format

Share Document