scholarly journals Erratum: Kota et al., “Hippocampal Theta Oscillations Support Successful Associative Memory Formation”

2021 ◽  
Vol 41 (6) ◽  
pp. 1363-1363
2020 ◽  
Author(s):  
Srinivas Kota ◽  
Michael D. Rugg ◽  
Bradley C. Lega

1.AbstractModels of memory formation posit that recollection as compared to familiarity-based memory depends critically on the hippocampus, which binds features of an event to its context. For this reason, the contrast between study items that are later recollected versus those that are recognized on the basis of familiarity should reveal electrophysiological patterns in the hippocampus selectively involved in associative memory encoding. Extensive data from studies in rodents support a model in which theta oscillations fulfill this role, but results in humans results have not been as clear. Here, we employed an associative recognition memory procedure to identify hippocampal correlates of successful associative memory encoding and retrieval in patients undergoing intracranial EEG monitoring. We identified a dissociation between 2– 5 Hz and 5–9 Hz theta oscillations, by which 2–5 Hz oscillations uniquely were linked with successful associative memory in both the anterior and posterior hippocampus. These oscillations exhibited a significant phase reset that also predicted successful associative encoding, distinguished recollected from familiar items at retrieval, and contributed to reinstatement of encoding-related patterns that distinguished these items. Our results provide direct electrophysiological evidence that 2–5 Hz hippocampal theta oscillations support the encoding and retrieval of memories based on recollection but not familiarity.2.Significance StatementExtensive fMRI evidence suggests that the hippocampus plays a selective role in recollection rather than familiarity, during both encoding and retrieval. However, there is little or no electrophysiological evidence that speaks to whether the hippocampus is selectively involved in recollection. Here, we used intracranial EEG from human participants engaged in an associative recognition paradigm. The findings suggest that oscillatory power and phase reset in the hippocampus are selectively associated with recollection rather than familiarity-based memory judgements. Furthermore, reinstatement of oscillatory patterns in the hippocampus was stronger for successful recollection than familiarity. Collectively, the findings support a role for hippocampal theta oscillations in human episodic memory.


2020 ◽  
Vol 40 (49) ◽  
pp. 9507-9518 ◽  
Author(s):  
Srinivas Kota ◽  
Michael D. Rugg ◽  
Bradley C. Lega

Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 692
Author(s):  
Víctor J. López-Madrona ◽  
Santiago Canals

Theta oscillations organize neuronal firing in the hippocampus during context exploration and memory formation. Recently, we have shown that multiple theta rhythms coexist in the hippocampus, reflecting the activity in their afferent regions in CA3 (Schaffer collaterals) and the entorhinal cortex layers II (EC-II, perforant pathway) and III (EC-III, temporoammonic pathway). Frequency and phase coupling between theta rhythms were modulated by the behavioral state, with synchronized theta rhythmicity preferentially occurring in tasks involving memory updating. However, information transmission between theta generators was not investigated. Here, we used source separation techniques to disentangle the current generators recorded in the hippocampus of rats exploring a known environment with or without a novel stimulus. We applied analytical tools based on Granger causality and transfer entropy to investigate linear and non-linear directed interactions, respectively, between the theta activities. Exploration in the novelty condition was associated with increased theta power in the generators with EC origin. We found a significant directed interaction from the Schaffer input over the EC-III input in CA1, and a bidirectional interaction between the inputs in the hippocampus originating in the EC, likely reflecting the connection between layers II and III. During novelty exploration, the influence of the EC-II over the EC-III generator increased, while the Schaffer influence decreased. These results associate the increase in hippocampal theta activity and synchrony during novelty exploration with an increase in the directed functional connectivity from EC-II to EC-III.


2018 ◽  
Author(s):  
Danying Wang ◽  
Andrew Clouter ◽  
Qiaoyu Chen ◽  
Kimron L. Shapiro ◽  
Simon Hanslmayr

AbstractEpisodic memories are rich in sensory information and often contain integrated information from different sensory modalities. For instance, we can store memories of a recent concert with visual and auditory impressions being integrated in one episode. Theta oscillations have recently been implicated in playing a causal role synchronizing and effectively binding the different modalities together in memory. However, an open question is whether momentary fluctuations in theta synchronization predict the likelihood of associative memory formation for multisensory events. To address this question we presented movies and sounds with their luminance and volume modulated at theta (4 Hz), with a phase offset at 0° or 180° with respect to each other. This allowed us to entrain the visual and auditory cortex in a synchronous (0°) or asynchronous manner (180°). Participants were asked to remember the association between a movie and a sound while having their EEG activity recorded. Associative memory performance was significantly enhanced in the synchronous (0°) compared to the asynchronous (180°) condition. Source-level analysis demonstrated that the physical stimuli effectively entrained their respective cortical areas with a corresponding phase offset. Importantly, the strength of entrainment during encoding correlated with the efficacy of associative memory such that small phase differences between visual and auditory cortex predicted a high likelihood of correct retrieval in a later recall test. These findings suggest that theta oscillations serve a specific function in the episodic memory system: Binding the contents of different modalities into coherent memory episodes.Significance StatementHow multi-sensory experiences are bound to form a coherent episodic memory representation is one of the fundamental questions in human episodic memory research. Evidence from animal literature suggests that the relative timing between an input and theta oscillations in the hippocampus is crucial for memory formation. We precisely controlled the timing between visual and auditory stimuli and the neural oscillations at 4 Hz using a multisensory entrainment paradigm. Human associative memory formation depends on coincident timing between sensory streams processed by the corresponding brain regions. We provide evidence for a significant role of relative timing of neural theta activity in human episodic memory on a single trial level, which reveals a crucial mechanism underlying human episodic memory.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrew J. Kesner ◽  
Rick Shin ◽  
Coleman B. Calva ◽  
Reuben F. Don ◽  
Sue Junn ◽  
...  

AbstractThe supramammillary region (SuM) is a posterior hypothalamic structure, known to regulate hippocampal theta oscillations and arousal. However, recent studies reported that the stimulation of SuM neurons with neuroactive chemicals, including substances of abuse, is reinforcing. We conducted experiments to elucidate how SuM neurons mediate such effects. Using optogenetics, we found that the excitation of SuM glutamatergic (GLU) neurons was reinforcing in mice; this effect was relayed by their projections to septal GLU neurons. SuM neurons were active during exploration and approach behavior and diminished activity during sucrose consumption. Consistently, inhibition of SuM neurons disrupted approach responses, but not sucrose consumption. Such functions are similar to those of mesolimbic dopamine neurons. Indeed, the stimulation of SuM-to-septum GLU neurons and septum-to-ventral tegmental area (VTA) GLU neurons activated mesolimbic dopamine neurons. We propose that the supramammillo-septo-VTA pathway regulates arousal that reinforces and energizes behavioral interaction with the environment.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hemmings Wu ◽  
Hartwin Ghekiere ◽  
Dorien Beeckmans ◽  
Tim Tambuyzer ◽  
Kris van Kuyck ◽  
...  

Abstract Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability and affordability. Our open-source closed-loop DBS system is effective and warrants further research using open-source hardware for closed-loop neuromodulation.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Angus Chadwick ◽  
Mark CW van Rossum ◽  
Matthew F Nolan

Encoding of behavioral episodes as spike sequences during hippocampal theta oscillations provides a neural substrate for computations on events extended across time and space. However, the mechanisms underlying the numerous and diverse experimentally observed properties of theta sequences remain poorly understood. Here we account for theta sequences using a novel model constrained by the septo-hippocampal circuitry. We show that when spontaneously active interneurons integrate spatial signals and theta frequency pacemaker inputs, they generate phase precessing action potentials that can coordinate theta sequences in place cell populations. We reveal novel constraints on sequence generation, predict cellular properties and neural dynamics that characterize sequence compression, identify circuit organization principles for high capacity sequential representation, and show that theta sequences can be used as substrates for association of conditioned stimuli with recent and upcoming events. Our results suggest mechanisms for flexible sequence compression that are suited to associative learning across an animal’s lifespan.


Sign in / Sign up

Export Citation Format

Share Document