scholarly journals Munc18-1 is essential for neuropeptide secretion in neurons

2021 ◽  
pp. JN-RM-3150-20
Author(s):  
Daniël C. Puntman ◽  
Swati Arora ◽  
Margherita Farina ◽  
Ruud F. Toonen ◽  
Matthijs Verhage
PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009877
Author(s):  
Alexander T. Lin-Moore ◽  
Motunrayo J. Oyeyemi ◽  
Marc Hammarlund

Injured axons must regenerate to restore nervous system function, and regeneration is regulated in part by external factors from non-neuronal tissues. Many of these extrinsic factors act in the immediate cellular environment of the axon to promote or restrict regeneration, but the existence of long-distance signals regulating axon regeneration has not been clear. Here we show that the Rab GTPase rab-27 inhibits regeneration of GABAergic motor neurons in C. elegans through activity in the intestine. Re-expression of RAB-27, but not the closely related RAB-3, in the intestine of rab-27 mutant animals is sufficient to rescue normal regeneration. Several additional components of an intestinal neuropeptide secretion pathway also inhibit axon regeneration, including NPDC1/cab-1, SNAP25/aex-4, KPC3/aex-5, and the neuropeptide NLP-40, and re-expression of these genes in the intestine of mutant animals is sufficient to restore normal regeneration success. Additionally, NPDC1/cab-1 and SNAP25/aex-4 genetically interact with rab-27 in the context of axon regeneration inhibition. Together these data indicate that RAB-27-dependent neuropeptide secretion from the intestine inhibits axon regeneration, and point to distal tissues as potent extrinsic regulators of regeneration.


1982 ◽  
Vol 35 (6) ◽  
pp. 424-428 ◽  
Author(s):  
C.D. Ingram ◽  
R.J. Bicknell ◽  
D. Brown ◽  
G. Leng

Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4444-4456 ◽  
Author(s):  
Salah Elias ◽  
Charlène Delestre ◽  
Stéphane Ory ◽  
Sébastien Marais ◽  
Maïté Courel ◽  
...  

Chromogranins are a family of acidic glycoproteins that play an active role in hormone and neuropeptide secretion through their crucial role in secretory granule biogenesis in neuroendocrine cells. However, the molecular mechanisms underlying their granulogenic activity are still not fully understood. Because we previously demonstrated that the expression of the major component of secretory granules, chromogranin A (CgA), is able to induce the formation of secretory granules in nonendocrine COS-7 cells, we decided to use this model to dissect the mechanisms triggered by CgA leading to the biogenesis and trafficking of such granules. Using quantitative live cell imaging, we first show that CgA-induced organelles exhibit a Ca2+-dependent trafficking, in contrast to native vesicle stomatitis virus G protein-containing constitutive vesicles. To identify the proteins that confer such properties to the newly formed granules, we developed CgA-stably-expressing COS-7 cells, purified their CgA-containing granules by subcellular fractionation, and analyzed the granule proteome by liquid chromatography-tandem mass spectrometry. This analysis revealed the association of several cytosolic proteins to the granule membrane, including GTPases, cytoskeleton-based molecular motors, and other proteins with actin- and/or Ca2+-binding properties. Furthermore, disruption of cytoskeleton affects not only the distribution and the transport but also the Ca2+-evoked exocytosis of the CgA-containing granules, indicating that these granules interact with microtubules and cortical actin for the regulated release of their content. These data demonstrate for the first time that the neuroendocrine factor CgA induces the recruitment of cytoskeleton-, GTP-, and Ca2+-binding proteins in constitutively secreting COS-7 cells to generate vesicles endowed with typical dynamics and exocytotic properties of neuroendocrine secretory granules.


2020 ◽  
Author(s):  
Noa Deshe ◽  
Yifat Eliezer ◽  
Lihi Hoch ◽  
Eyal Itskovits ◽  
Shachaf Ben-Ezra ◽  
...  

SummaryThe notion that associative memories may be transmitted across generations is intriguing, yet controversial. Here, we trained C. elegans nematodes to associate an odorant with stressful starvation conditions, and surprisingly, this associative memory was evident two generations down of the trained animals. The inherited memory endowed the progeny with a fitness advantage, as memory reactivation induced rapid protective stress responses that allowed the animals to prepare in advance for an impending adversity. Sperm, but not oocytes, transmitted the associative memory, and the inheritance required H3K9 and H3K36 methylations, the small RNA-binding Argonaute NRDE-3, and intact neuropeptide secretion. Remarkably, activation of a single chemosensory neuron sufficed to induce a serotonin-mediated systemic stress response in both the parental trained generation and in its progeny. These findings challenge long-held concepts by establishing that associative memories may indeed be transferred across generations.


2020 ◽  
Author(s):  
Alexander T. Lin-Moore ◽  
Motunrayo J. Oyeyemi ◽  
Marc Hammarlund

ABSTRACTInjured axons must regenerate to restore nervous system function, and regeneration is regulated in part by external factors from non-neuronal tissues. Many of these extrinsic factors act in the immediate cellular environment of the axon to promote or restrict regeneration, but the existence of long-distance signals regulating axon regeneration has not been clear. Here we show that the Rab GTPase rab-27 inhibits regeneration of GABAergic motor neurons in C. elegans through activity in the intestine. Re-expression of RAB-27, but not the closely related RAB-3, in the intestine of rab-27 mutant animals is sufficient to rescue normal regeneration. Several additional components of an intestinal neuropeptide secretion pathway also inhibit axon regeneration, including NPDC1/cab-1, SNAP25/aex-4, and KPC3/aex-5. Together these data indicate that RAB-27-dependent neuropeptide secretion from the intestine inhibits axon regeneration, and point to distal tissues as potent extrinsic regulators of regeneration.


Sign in / Sign up

Export Citation Format

Share Document