scholarly journals Cell Adhesion Molecules in Synapse Formation

2004 ◽  
Vol 24 (42) ◽  
pp. 9244-9249 ◽  
Author(s):  
P. Washbourne
2009 ◽  
Vol 28 (22) ◽  
pp. 3564-3578 ◽  
Author(s):  
So-Hee Lim ◽  
Seok-Kyu Kwon ◽  
Myung Kyu Lee ◽  
Jeonghee Moon ◽  
Dae Gwin Jeong ◽  
...  

Author(s):  
Michael Hortsch ◽  
Kakanahalli Nagaraj ◽  
Tanja Godenschwege

AbstractL1-type cell adhesion molecules (CAMs) are important mediators of neural differentiation, including axonal outgrowth and pathfinding and also of synapse formation and maintenance. In addition, their interactions with cytoskeletal components are highly conserved and regulated. How these different aspects of CAM functionality relate to each other is not well understood. Based on results from our and other laboratories we propose that ankyrin-binding to L1-type CAMs provides a master switch. The interaction with ankyrins directs L1-type adhesive proteins into different functional contexts, either ankyrin-independent functions, such as neurite outgrowth and axonal pathfinding or into ankyrin-dependent functions, such as L1’s role at axon initial segments (AIS), paranodal regions, synapses and in dendrites.


Author(s):  
Takeshi Uemura ◽  
Tomoko Shiroshima ◽  
Asami Maeda ◽  
Misato Yasumura ◽  
Takashi Shimada ◽  
...  

2014 ◽  
Vol 369 (1652) ◽  
pp. 20130517 ◽  
Author(s):  
Cecilia S. Lu ◽  
Bo Zhai ◽  
Alex Mauss ◽  
Matthias Landgraf ◽  
Stephen Gygi ◽  
...  

Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila . However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins.


1999 ◽  
Vol 19 (5-6) ◽  
pp. 41 ◽  
Author(s):  
Francisco Sanchez-Madrid ◽  
Roberto González-Amaro

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 476-P
Author(s):  
YUSUKE TAKEDA ◽  
KEIICHIRO MATOBA ◽  
DAIJI KAWANAMI ◽  
YOSUKE NAGAI ◽  
TOMOYO AKAMINE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document