scholarly journals Aplysia cell adhesion molecules and serotonin regulate sensory cell- motor cell interactions during early stages of synapse formation in vitro

1994 ◽  
Vol 14 (11) ◽  
pp. 6886-6900 ◽  
Author(s):  
H Zhu ◽  
F Wu ◽  
S Schacher
1994 ◽  
Vol 42 (10) ◽  
pp. 1333-1340 ◽  
Author(s):  
Y Horiguchi ◽  
F Furukawa ◽  
M Fujita ◽  
S Imamura

We examined the ultrastructural localization of E (epithelial)-cadherin cell adhesion molecules by immunoperoxidase electron microscopy on the epithelium of mouse intestine, epidermis of human skin, and cultured human keratinocytes. The in vivo studies demonstrated that E-cadherin was present at the intermediate junction but not at the desmosome of the mouse intestinal single epithelium, and was found on the cytoplasmic membranes of keratinocytes with condensation in the intercellular space of the desmosomes, except for the basal surface of the basal cells. In vitro studies demonstrated that keratinocytes cultured in medium containing a low Ca2+ concentration (0.1 mM) lacked the tight connection through desmosomes, and that E-cadherin showed diffuse distribution and dot-like accumulation around the free surface of the cytoplasmic membrane. In culture medium containing a high concentration of Ca2+ (0.6 mM), keratinocytes formed desmosomal adhesion structures in which E-cadherin was accumulated. The free surface of the keratinocytes in this medium showed weaker distribution and a lesser amount of dot-like accumulation of E-cadherin than that in a low Ca2+ condition. These findings suggest that the distribution pattern of the E-cadherin cell adhesion molecules on the keratinocytes is different from that on the single epithelium of the intestine, and that E-cadherin on the cytoplasmic membrane of the keratinocytes shifts to the desmosomes under physiological conditions, participating in adhesion in association with other desmosomal cadherins.


1997 ◽  
Vol 137 (3) ◽  
pp. 703-714 ◽  
Author(s):  
Timothy D. Garver ◽  
Qun Ren ◽  
Shmuel Tuvia ◽  
Vann Bennett

This paper presents evidence that a member of the L1 family of ankyrin-binding cell adhesion molecules is a substrate for protein tyrosine kinase(s) and phosphatase(s), identifies the highly conserved FIGQY tyrosine in the cytoplasmic domain as the principal site of phosphorylation, and demonstrates that phosphorylation of the FIGQY tyrosine abolishes ankyrin-binding activity. Neurofascin expressed in neuroblastoma cells is subject to tyrosine phosphorylation after activation of tyrosine kinases by NGF or bFGF or inactivation of tyrosine phosphatases with vanadate or dephostatin. Furthermore, both neurofascin and the related molecule Nr-CAM are tyrosine phosphorylated in a developmentally regulated pattern in rat brain. The FIGQY sequence is present in the cytoplasmic domains of all members of the L1 family of neural cell adhesion molecules. Phosphorylation of the FIGQY tyrosine abolishes ankyrin binding, as determined by coimmunoprecipitation of endogenous ankyrin and in vitro ankyrin-binding assays. Measurements of fluorescence recovery after photobleaching demonstrate that phosphorylation of the FIGQY tyrosine also increases lateral mobility of neurofascin expressed in neuroblastoma cells to the same extent as removal of the cytoplasmic domain. Ankyrin binding, therefore, appears to regulate the dynamic behavior of neurofascin and is the target for regulation by tyrosine phosphorylation in response to external signals. These findings suggest that tyrosine phosphorylation at the FIGQY site represents a highly conserved mechanism, used by the entire class of L1-related cell adhesion molecules, for regulation of ankyrin-dependent connections to the spectrin skeleton.


2009 ◽  
Vol 28 (22) ◽  
pp. 3564-3578 ◽  
Author(s):  
So-Hee Lim ◽  
Seok-Kyu Kwon ◽  
Myung Kyu Lee ◽  
Jeonghee Moon ◽  
Dae Gwin Jeong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document