scholarly journals Reversible Recruitment of a Homeostatic Reserve Pool of Synaptic Vesicles Underlies Rapid Homeostatic Plasticity of Quantal Content

2016 ◽  
Vol 36 (3) ◽  
pp. 828-836 ◽  
Author(s):  
Xueyong Wang ◽  
Martin J. Pinter ◽  
Mark M. Rich
Author(s):  
Kaitlyn E. Fouke ◽  
M. Elizabeth Wegman ◽  
Sarah A. Weber ◽  
Emily B. Brady ◽  
Cristina Román-Vendrell ◽  
...  

Neurotransmission relies critically on the exocytotic release of neurotransmitters from small synaptic vesicles (SVs) at the active zone. Therefore, it is essential for neurons to maintain an adequate pool of SVs clustered at synapses in order to sustain efficient neurotransmission. It is well established that the phosphoprotein synapsin 1 regulates SV clustering at synapses. Here, we demonstrate that synuclein, another SV-associated protein and synapsin binding partner, also modulates SV clustering at a vertebrate synapse. When acutely introduced to unstimulated lamprey reticulospinal synapses, a pan-synuclein antibody raised against the N-terminal domain of α-synuclein induced a significant loss of SVs at the synapse. Both docked SVs and the distal reserve pool of SVs were depleted, resulting in a loss of total membrane at synapses. In contrast, antibodies against two other abundant SV-associated proteins, synaptic vesicle glycoprotein 2 (SV2) and vesicle-associated membrane protein (VAMP/synaptobrevin), had no effect on the size or distribution of SV clusters. Synuclein perturbation caused a dose-dependent reduction in the number of SVs at synapses. Interestingly, the large SV clusters appeared to disperse into smaller SV clusters, as well as individual SVs. Thus, synuclein regulates clustering of SVs at resting synapses, as well as docking of SVs at the active zone. These findings reveal new roles for synuclein at the synapse and provide critical insights into diseases associated with α-synuclein dysfunction, such as Parkinson’s disease.


2008 ◽  
Vol 28 (43) ◽  
pp. 10835-10843 ◽  
Author(s):  
D. Gitler ◽  
Q. Cheng ◽  
P. Greengard ◽  
G. J. Augustine

2013 ◽  
Vol 289 (6) ◽  
pp. 3602-3612 ◽  
Author(s):  
Yuliya Skorobogatko ◽  
Ashly Landicho ◽  
Robert J. Chalkley ◽  
Andrew V. Kossenkov ◽  
Gianluca Gallo ◽  
...  

1999 ◽  
Vol 354 (1381) ◽  
pp. 243-257 ◽  
Author(s):  
Fabio Benfenati ◽  
Franco Onofri ◽  
Silvia Giovedí

Information transfer among neurons is operated by neurotransmitters stored in synaptic vesicles and released to the extracellular space by an efficient process of regulated exocytosis. Synaptic vesicles are organized into two distinct functional pools, a large reserve pool in which vesicles are restrained by the actin–based cytoskeleton, and a quantitatively smaller releasable pool in which vesicles approach the presynaptic membrane and eventually fuse with it on stimulation. Both synaptic vesicle trafficking and neurotransmitter release depend on a precise sequence of events that include release from the reserve pool, targeting to the active zone, docking, priming, fusion and endocytotic retrieval of synaptic vesicles. These steps are mediated by a series of specific interactions among cytoskeletal, synaptic vesicle, presynaptic membrane and cytosolic proteins that, by acting in concert, promote the spatial and temporal regulation of the exocytotic machinery. The majority of these interactions are mediated by specific protein modules and domains that are found in many proteins and are involved in numerous intracellular processes. In this paper, the possible physiological role of these multiple protein–protein interactions is analysed, with ensuing updating and clarification of the present molecular model of the process of neurotransmitter release.


2017 ◽  
Vol 114 (45) ◽  
pp. 12057-12062 ◽  
Author(s):  
Fabian Gerth ◽  
Maria Jäpel ◽  
Arndt Pechstein ◽  
Gaga Kochlamazashvili ◽  
Martin Lehmann ◽  
...  

Neurotransmission is mediated by the exocytic release of neurotransmitters from readily releasable synaptic vesicles (SVs) at the active zone. To sustain neurotransmission during periods of elevated activity, release-ready vesicles need to be replenished from the reserve pool of SVs. The SV-associated synapsins are crucial for maintaining this reserve pool and regulate the mobilization of reserve pool SVs. How replenishment of release-ready SVs from the reserve pool is regulated and which other factors cooperate with synapsins in this process is unknown. Here we identify the endocytic multidomain scaffold protein intersectin as an important regulator of SV replenishment at hippocampal synapses. We found that intersectin directly associates with synapsin I through its Src-homology 3 A domain, and this association is regulated by an intramolecular switch within intersectin 1. Deletion of intersectin 1/2 in mice alters the presynaptic nanoscale distribution of synapsin I and causes defects in sustained neurotransmission due to defective SV replenishment. These phenotypes were rescued by wild-type intersectin 1 but not by a locked mutant of intersectin 1. Our data reveal intersectin as an autoinhibited scaffold that serves as a molecular linker between the synapsin-dependent reserve pool and the presynaptic endocytosis machinery.


1999 ◽  
Vol 354 (1381) ◽  
pp. 269-279 ◽  
Author(s):  
Sabine Hilfiker ◽  
Vincent A. Pieribone ◽  
Andrew J. Czernik ◽  
Hung-Teh Kao ◽  
George J. Augustine ◽  
...  

One of the crucial issues in understanding neuronal transmission is to define the role(s) of the numerous proteins that are localized within presynaptic terminals and are thought to participate in the regulation of the synaptic vesicle life cycle. Synapsins are a multigene family of neuron–specific phosphoproteins and are the most abundant proteins on synaptic vesicles. Synapsins are able to interact in vitro with lipid and protein components of synaptic vesicles and with various cytoskeletal proteins, including actin. These and other studies have led to a model in which synapsins, by tethering synaptic vesicles to each other and to an actin–based cytoskeletal meshwork, maintain a reserve pool of vesicles in the vicinity of the active zone. Perturbation of synapsin function in a variety of preparations led to a selective disruption of this reserve pool and to an increase in synaptic depression, suggesting that the synapsin–dependent cluster of vesicles is required to sustain release of neurotransmitter in response to high levels of neuronal activity. In a recent study performed at the squid giant synapse, perturbation of synapsin function resulted in a selective disruption of the reserve pool of vesicles and in addition, led to an inhibition and slowing of the kinetics of neurotransmitter release, indicating a second role for synapsins downstream from vesicle docking. These data suggest that synapsins are involved in two distinct reactions which are crucial for exocytosis in presynaptic nerve terminals. This review describes our current understanding of the molecular mechanisms by which synapsins modulate synaptic transmission, while the increasingly well–documented role of the synapsins in synapse formation and stabilization lies beyond the scope of this review.


2003 ◽  
Vol 161 (4) ◽  
pp. 737-747 ◽  
Author(s):  
Ona Bloom ◽  
Emma Evergren ◽  
Nikolay Tomilin ◽  
Ole Kjaerulff ◽  
Peter Löw ◽  
...  

It has been hypothesized that in the mature nerve terminal, interactions between synapsin and actin regulate the clustering of synaptic vesicles and the availability of vesicles for release during synaptic activity. Here, we have used immunogold electron microscopy to examine the subcellular localization of actin and synapsin in the giant synapse in lamprey at different states of synaptic activity. In agreement with earlier observations, in synapses at rest, synapsin immunoreactivity was preferentially localized to a portion of the vesicle cluster distal to the active zone. During synaptic activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known function in clustering of vesicles in the reserve pool, synapsin migrates from the synaptic vesicle cluster and participates in the organization of the actin-rich cytomatrix in the endocytic zone during synaptic activity.


Sign in / Sign up

Export Citation Format

Share Document