scholarly journals Skipped-Stimulus Approach Reveals That Short-Term Plasticity Dominates Synaptic Strength during Ongoing Activity

2015 ◽  
Vol 35 (21) ◽  
pp. 8297-8307 ◽  
Author(s):  
H. Yang ◽  
M. A. Xu-Friedman
2004 ◽  
Vol 84 (1) ◽  
pp. 69-85 ◽  
Author(s):  
MATTHEW A. XU-FRIEDMAN ◽  
WADE G. REGEHR

Xu-Friedman, Matthew A., and Wade G. Regehr. Structural Contributions to Short-Term Synaptic Plasticity. Physiol Rev 84: 69–85, 2004; 10.1152/physrev.00016.2003.—Synaptic ultrastructure is critical to many basic hypotheses about synaptic transmission. Various aspects of synaptic ultrastructure have also been implicated in the mechanisms of short-term plasticity. These forms of plasticity can greatly affect synaptic strength during ongoing activity. We review the evidence for how synaptic ultrastructure may contribute to facilitation, depletion, saturation, and desensitization.


2021 ◽  
Author(s):  
Alexandra Gastone Guilabert ◽  
Benjamin Ehret ◽  
Moritz O. Buchholz ◽  
Gregor F.P. Schuhknecht

To compute spiking responses, neurons integrate inputs from thousands of synapses whose strengths span an order of magnitude. Intriguingly, in mouse neocortex, the small minority of 'strong' synapses is found predominantly between similarly tuned cells, suggesting they are the synapses that determine a neuron's spike output. This raises the question of how other computational primitives, such as 'background' activity from the majority of synapses, which are 'weak', short-term plasticity, and temporal synchrony contribute to spiking. First, we combined extracellular stimulation and whole-cell recordings in mouse barrel cortex to map the distribution of excitatory postsynaptic potential (EPSP) amplitudes and paired-pulse ratios of excitatory synaptic connections converging onto individual layer 2/3 (L2/3) neurons. While generally net short-term plasticity was weak, connections with EPSPs > 2 mV displayed pronounced paired-pulse depression. EPSP amplitudes and paired-pulse ratios of connections converging onto the same neurons spanned the full range observed across L2/3 and there was no indication that strong synapses nor those with particular short-term plasticity properties were associated with particular cells, which critically constrains theoretical models of cortical filtering. To investigate how different computational primitives of synaptic information processing interact to shape spiking, we developed a computational model of a pyramidal neuron in the rodent L2/3 circuitry: firing rates and pairwise correlations of presynaptic inputs were constrained by in vivo observations, while synaptic strength and short-term plasticity were set based on our experimental data. Importantly, we found that the ability of strong inputs to evoke spiking critically depended on their high temporal synchrony and high firing rates observed in vivo and on synaptic background activity - and not primarily on synaptic strength, which in turn further enhanced information transfer. Depression of strong synapses was critical for maintaining a neuron's responsivity and prevented runaway excitation. Our results provide a holistic framework of how cortical neurons exploit complex synergies between temporal coding, synaptic properties, and noise in order to transform synaptic inputs into output firing.


Author(s):  
Mohammad Z. Awad ◽  
Ryan J. Vaden ◽  
Zachary T. Irwin ◽  
Christopher L. Gonzalez ◽  
Sarah Black ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nishant Singh ◽  
Thomas Bartol ◽  
Herbert Levine ◽  
Terrence Sejnowski ◽  
Suhita Nadkarni

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Atefeh Pooryasin ◽  
Marta Maglione ◽  
Marco Schubert ◽  
Tanja Matkovic-Rachid ◽  
Sayed-mohammad Hasheminasab ◽  
...  

AbstractThe physical distance between presynaptic Ca2+ channels and the Ca2+ sensors triggering the release of neurotransmitter-containing vesicles regulates short-term plasticity (STP). While STP is highly diversified across synapse types, the computational and behavioral relevance of this diversity remains unclear. In the Drosophila brain, at nanoscale level, we can distinguish distinct coupling distances between Ca2+ channels and the (m)unc13 family priming factors, Unc13A and Unc13B. Importantly, coupling distance defines release components with distinct STP characteristics. Here, we show that while Unc13A and Unc13B both contribute to synaptic signalling, they play distinct roles in neural decoding of olfactory information at excitatory projection neuron (ePN) output synapses. Unc13A clusters closer to Ca2+ channels than Unc13B, specifically promoting fast phasic signal transfer. Reduction of Unc13A in ePNs attenuates responses to both aversive and appetitive stimuli, while reduction of Unc13B provokes a general shift towards appetitive values. Collectively, we provide direct genetic evidence that release components of distinct nanoscopic coupling distances differentially control STP to play distinct roles in neural decoding of sensory information.


Sign in / Sign up

Export Citation Format

Share Document