scholarly journals Differential Effects of NMDA and AMPA Glutamate Receptors on Functional Magnetic Resonance Imaging Signals and Evoked Neuronal Activity during Forepaw Stimulation of the Rat

2006 ◽  
Vol 26 (33) ◽  
pp. 8409-8416 ◽  
Author(s):  
W. Gsell ◽  
M. Burke ◽  
D. Wiedermann ◽  
G. Bonvento ◽  
A. C. Silva ◽  
...  
1999 ◽  
Vol 5 (3) ◽  
pp. 161-164 ◽  
Author(s):  
P J Gareau ◽  
J S Gati ◽  
R S Menon ◽  
D Lee ◽  
G Rice ◽  
...  

The limited application of functional magnetic resonance imaging (fMRI) for investigations of multiple sclerosis (MS) patients has already shown that deficits of the motor, cognitive and visual systems may be identified by differences in the patterns of activation in response to a suitable stimulus. In MS patients with unilateral optic neuritis, the area of activation in the primary visual cortex, measured by fMRI techniques, is dramatically reduced in response to stimulation of the affected eye. The latency of the major positive component of the visual evoked potential (VEP) recorded upon stimulation of the affected eye is significantly increased in these patients, as compared to the unaffected eye and normal volunteers. We have found a correlation between the neural response measured using fMRI and the latency of the VEP. fMRI signal responses have the potential to provide more detailed topographic information relating to functional deficits in MS.


2016 ◽  
Vol 20 (1) ◽  
pp. 2
Author(s):  
Gail Yarmish ◽  
Michael L. Lipton

Functional magnetic resonance imaging (fMRI) is a technique that exploits magnetic resonance imaging (MRI) to detect regional brain activity through measurement of the hemodynamic response that is coupled to electrical neuronal activity. The most common fMRI method detects blood oxygen level dependent (BOLD) contrast. The BOLD effect represents alteration in the ratio of deoxygenated to oxygenated hemoglobin within brain tissue following neuronal activity. Alterations in this hemoglobin ratio result from changes in cerebral oxygen extraction, cerebral blood flow, and cerebral blood volume that occur in response to neuronal activity. The small, but detectable, change in magnetics resonance signal intensity is due to the sensitivity of magnetic resonance (MR) images to the paramagnetic deoxygenated state of hemoglobin that is the basis of contrast in fMRI applications. This review describes the physical and physiological bases of the MR signal, the principle of the BOLD effect, technical issues related to fMRI implementation, and fMRI experimental design. Research and clinical applications of fMRI are presented, including the use of fMRI in neurosurgical planning. Since it provides an individualized map of brain function, fMRI enables accurate localization of eloquent brain regions prior to surgery, allowing assessment of surgical risk and prognosis, as well as planning surgical approach.


Sign in / Sign up

Export Citation Format

Share Document